1
|
Ragon M, Bertheau L, Dumont J, Bellanger T, Grosselin M, Basu M, Pourcelot E, Horrigue W, Denimal E, Marin A, Vaucher B, Berland A, Lepoivre C, Dupont S, Beney L, Davey H, Guyot S. The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112603. [PMID: 36459911 DOI: 10.1016/j.jphotobiol.2022.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang).
Collapse
Affiliation(s)
- Mélanie Ragon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Tiffany Bellanger
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Marie Grosselin
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Mohini Basu
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Eléonore Pourcelot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Walid Horrigue
- UMR Agroécologie Équipe Biocom, INRAE Dijon, Institut Agro, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Emmanuel Denimal
- Institut Agro Dijon, Direction Scientifique, Appui à la Recherche, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Ambroise Marin
- Plateau Technique d'IMagerie Spectroscopique (PIMS), DImaCell Platform Université de Bourgogne - INRAE, Dijon, France
| | - Basile Vaucher
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Antoine Berland
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Corentin Lepoivre
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
2
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zhang L, Wu CL, Yang P, Wang YC, Zhang LL, Yang XY. Chilling injury mechanism of hardy kiwifruit (Actinidia arguta) was revealed by proteome of label-free techniques. J Food Biochem 2021; 45:e13897. [PMID: 34390016 DOI: 10.1111/jfbc.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Refrigeration is an important method to extend shelf life of hardy kiwifruit. However, the inappropriate storage temperature can lead to chilling injury in the fruit. We found that firmness, total soluble solids, and total polyphenolic content of the fruit exposed to 0℃ environment were apparently lower, and titratable acidity content, browning rate, weight loss rate, electrolyte leakage, proline content, and malondialdehyde content were higher obviously than 4℃. A total of 244 differentially expressed proteins were found result from differential temperatures, among which 113 were up-regulated and 131 were down-regulated. Subcellular localization results presented that the differentially expressed proteins which were affected by low temperature were located in cytoplasmic, chloroplast, nuclear, mitochondrial, plasma membrane, and extracellular. Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed proteins were mainly participated in synthesis of citrate cycle, oxidative phosphorylation, fatty acid biosynthesis, and starch and sucrose metabolism. Protein-protein interaction results revealed that central proteins interaction points respectively are 30S ribosomal proteins, 30S ribosomal protein S7, chloroplastic, cell division cycle 5-like protein, 50S ribosomal protein, ribosomal protein, ribosomal protein L6 protein, and SRP54 subunit protein. The quality deviations of all identified peptides were mainly distributed within 10 ppm, and MS2 has an ideal andromeda score, with more than 87.82% peptide scores above 60 points, and the median peptide score of 99.28 points. Therefore, the results of this study provide important information for new gene revelation and gene interaction relationship in hardy kiwifruit of chilling injury. PRACTICAL APPLICATIONS: Inhibition of cold damage in hardy kiwifruit under low temperature is very important work for the development of its storage industry. However, many qualities of fruit will deteriorate after long-term cold storage and those biological activities of the fruits are regulated by proteins. It is, therefore, of great significance to reveal the key proteins caused cold damage in hardy kiwifruit. Moreover, the study results could provide a scientific information for the quality improvement and genetic modification of hardy kiwifruit.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Chun-Ling Wu
- Department of Food Science, Forest College, Bei Hua University, Jilin, PR China
| | - Ping Yang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Ying-Chen Wang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Lu-Lu Zhang
- Department of Food Science, Forest College, Bei Hua University, Jilin, PR China
| | - Xi-Yue Yang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| |
Collapse
|
4
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Herold I, Kowbel D, Delgado-Álvarez DL, Garduño-Rosales M, Mouriño-Pérez RR, Yarden O. Transcriptional profiling and localization of GUL-1, a COT-1 pathway component, in Neurospora crassa. Fungal Genet Biol 2019; 126:1-11. [PMID: 30731203 DOI: 10.1016/j.fgb.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023]
Abstract
Impairment of theNeurospora crassaCOT-1 kinase results in defects in hyphal polarity. Some of these effects are partially suppressed by inactivation of gul-1 (encoding an mRNA-binding protein involved in translational regulation). Here, we report on the transcriptional profiling of cot-1 inactivation and demonstrate that gul-1 affects transcript abundance of multiple genes in the COT-1 pathway, including processes such as cell wall remodeling, nitrogen and amino acid metabolism. The GUL-1 protein itself was found to be distributed within the entire hyphal cell, along with a clear presence of aggregates that traffic within the cytoplasm. Live imaging of GUL-1-GFP demonstrated that GUL-1 transport is microtubule-dependent. Cellular stress, as imposed by the presence of the cell wall biosynthesis inhibitor Nikkomycin Z or by nitrogen limitation, resulted in a 2-3-fold increase of GUL-1 aggregate association with nuclei. Taken together, this study demonstrates that GUL-1 affects multiple processes, its function is stress-related and linked with cellular traffic and nuclear association.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - David Kowbel
- Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720-3102, USA
| | - Diego L Delgado-Álvarez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
6
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
7
|
Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Sci Rep 2018; 8:11468. [PMID: 30065356 PMCID: PMC6068138 DOI: 10.1038/s41598-018-29832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic translation the 60S ribosome subunit has not been proposed to interact with mRNA or closed-loop factors eIF4E, eIF4G, and PAB1. Using analytical ultracentrifugation with fluorescent detection system, we have identified a 57S translation complex that contains the 60S ribosome, mRNA, and the closed-loop factors. Previously published data by others also indicate the presence of a 50S-60S translation complex containing these same components. We have found that the abundance of this complex increased upon translational cessation, implying formation after ribosomal dissociation. Stoichiometric analyses of the abundances of the closed-loop components in the 57S complex indicate this complex is most similar to polysomal and monosomal translation complexes at the end of translation rather than at the beginning or middle of translation. In contrast, a 39S complex containing the 40S ribosome bound to mRNA and closed-loop factors was also identified with stoichiometries most similar to polysomal complexes engaged in translation, suggesting that the 39S complex is the previously studied 48S translation initiation complex. These results indicate that the 60S ribosome can associate with the closed-loop mRNA structure and plays a previously undetected role in the translation process.
Collapse
|
8
|
Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 2018; 86:177-191. [PMID: 29139201 PMCID: PMC5897186 DOI: 10.1002/prot.25422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022]
Abstract
The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.
Collapse
Affiliation(s)
- Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Roy Richardson
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Shiwha Park
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| |
Collapse
|
9
|
Brandariz-Núñez A, Zeng F, Lam QN, Jin H. Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA (NEW YORK, N.Y.) 2018; 24:43-55. [PMID: 28986506 PMCID: PMC5733569 DOI: 10.1261/rna.062547.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5'UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein-protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5'UTR by RNA-binding proteins in mRNA translation.
Collapse
Affiliation(s)
- Alberto Brandariz-Núñez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Quan Ngoc Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
10
|
Kurischko C, Broach JR. Phosphorylation and nuclear transit modulate the balance between normal function and terminal aggregation of the yeast RNA-binding protein Ssd1. Mol Biol Cell 2017; 28:3057-3069. [PMID: 28877986 PMCID: PMC5662262 DOI: 10.1091/mbc.e17-02-0100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
Ssd1 targets mRNAs to daughter cells for translation or to stress granules (SGs) and P-bodies (PBs) for storage or decay. PB components also assist in its nuclear export. If Ssd1 fails to localize to the nucleus, it is targeted to IPOD. IPOD and PB/SG association requires a prion-like domain, whose activity is differentially regulated by Cbk1 phosphorylation. Yeast Ssd1 is an RNA-binding protein that shuttles between the nucleus and cytoplasm. Ssd1 interacts with its target mRNAs initially during transcription by binding through its N-terminal prion-like domain (PLD) to the C-terminal domain of RNA polymerase II. Ssd1 subsequently targets mRNAs acquired in the nucleus either to daughter cells for translation or to stress granules (SGs) and P-bodies (PBs) for mRNA storage or decay. Here we show that PB components assist in the nuclear export of Ssd1and subsequent targeting of Ssd1 to PB sites in the cytoplasm. In the absence of import into the nucleus, Ssd1 fails to associate with PBs in the cytoplasm but rather is targeted to cytosolic insoluble protein deposits (IPODs). The association of Ssd1 either with IPOD sites or with PB/SG requires the PLD, whose activity is differentially regulated by the Ndr/LATS family kinase, Cbk1: phosphorylation suppresses PB/SG association but enhances IPOD formation. This regulation likely accrues from a phosphorylation-sensitive nuclear localization sequence located in the PLD. The results presented here may inform our understanding of aggregate formation by RBP in certain neurological diseases.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Biochemistry, Penn State University College of Medicine, Hershey, PA 17033
| | - James R Broach
- Department of Biochemistry, Penn State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
11
|
Brambilla M, Martani F, Branduardi P. The recruitment of the Saccharomyces cerevisiae poly(A)-binding protein into stress granules: new insights into the contribution of the different protein domains. FEMS Yeast Res 2017; 17:4061003. [DOI: 10.1093/femsyr/fox059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
|
12
|
Wang X, Xi W, Toomey S, Chiang YC, Hasek J, Laue TM, Denis CL. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation. PLoS One 2016; 11:e0150616. [PMID: 26953568 PMCID: PMC4783044 DOI: 10.1371/journal.pone.0150616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 01/06/2023] Open
Abstract
Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Shaun Toomey
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Yueh-Chin Chiang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of ASCR, Prague, Videnska 1083, Czech Republic
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gromadzka AM, Steckelberg AL, Singh KK, Hofmann K, Gehring NH. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res 2016; 44:2348-61. [PMID: 26773052 PMCID: PMC4797287 DOI: 10.1093/nar/gkw009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs.
Collapse
Affiliation(s)
| | | | - Kusum K Singh
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
14
|
Martani F, Marano F, Bertacchi S, Porro D, Branduardi P. The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci Rep 2015; 5:18318. [PMID: 26658950 PMCID: PMC4677312 DOI: 10.1038/srep18318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element.
Collapse
Affiliation(s)
- Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Francesca Marano
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy.,SYSBIO - Centre of Systems Biology, Milano and Roma, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| |
Collapse
|
15
|
The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genet 2015; 11:e1004903. [PMID: 25569619 PMCID: PMC4287443 DOI: 10.1371/journal.pgen.1004903] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022] Open
Abstract
The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control. All organisms must respond to changes in their external environment such as exposure to different stresses. The availability of genome sequences and post-genomic technologies has enabled the analysis of these adaptive responses at the molecular level in terms of altered gene expression profiles. However, relatively few studies have focused on how cells regulate the translation of mRNA into protein in response to stress, despite its fundamental role in gene expression pathways. In this study, we show that a previously identified RNA-binding protein called Slf1p plays a major role in mRNA-specific regulation of translation during oxidative stress conditions and is necessary to promote the translation of stress-responsive mRNAs. This protein is a member of the so-called “La-related” family of proteins that have not been well characterized, although they are conserved throughout evolution. Exposure to oxidants is known to cause a general down-regulation of protein synthesis, although many stress response proteins are able to overcome this inhibition and increase their protein levels following stress by as yet unknown mechanisms. Our experiments offer one possible explanation, as they show that Slf1p plays a critical role in enhancing translation of many of these proteins, including many that are necessary for the cellular stress response.
Collapse
|
16
|
The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1062-8. [PMID: 25120199 DOI: 10.1016/j.bbagrm.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
Abstract
The cytoplasmic poly(A) binding protein 1 (PABPC1) is an essential eukaryotic translational initiation factor first described over 40 years ago. Most studies of PABPC1 have focused on its N-terminal RRM domains, which bind the mRNA 3' poly(A) tail and 5' translation complex eIF4F via eIF4G; however, the protein also contains a C-terminal MLLE domain that binds a peptide motif, termed PAM2, found in many proteins involved in translation regulation and mRNA metabolism. Studies over the past decade have revealed additional functions of PAM2-containing proteins (PACs) in neurodegenerative diseases, circadian rhythms, innate defense, and ubiquitin-mediated protein degradation. Here, we summarize functional and structural studies of the MLLE/PAM2 interaction and discuss the diverse roles of PACs.
Collapse
|
17
|
Zhang C, Wang X, Park S, Chiang YC, Xi W, Laue TM, Denis CL. Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Protein Sci 2014; 23:1036-49. [PMID: 24838188 DOI: 10.1002/pro.2490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 01/02/2023]
Abstract
We have previously identified 55 nonribosomal proteins in PAB1-mRNP complexes in Saccharomyces cerevisiae using mass spectrometric analysis. Because one of the inherent limitations of mass spectrometry is that it does not inform as to the size or type of complexes in which the proteins are present, we consequently used analytical ultracentrifugation with fluorescent detection system (AU-FDS) to determine which proteins are present in the 77S monosomal translation complex that contains minimally the closed-loop structure components (eIF4E, eIF4G, and PAB1), mRNA, and the 40S and 60S ribosomes. We assayed by AU-FDS analysis 33 additional PAB1-mRNP factors but found that only five of these proteins were present in the 77S translation complex: eRF1, SLF1, SSD1, PUB1, and SBP1. eRF1 is involved in translation termination, SBP1 is a translational repressor, and SLF1, SSD1, and PUB1 are known mRNA binding proteins. Many of the known P body/stress granule proteins that associate with the PAB1-mRNP were not present in the 77S translation complex, implying that P body/stress granules result from significant protein additions after translational cessation. These data inform that AU-FDS can clarify protein complex identification that remains undetermined after typical immunoprecipitation and mass spectrometric analyses.
Collapse
Affiliation(s)
- Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | | | | | | | | | | | | |
Collapse
|
18
|
Wanless AG, Lin Y, Weiss EL. Cell morphogenesis proteins are translationally controlled through UTRs by the Ndr/LATS target Ssd1. PLoS One 2014; 9:e85212. [PMID: 24465507 PMCID: PMC3897418 DOI: 10.1371/journal.pone.0085212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/24/2013] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells control their growth and morphogenesis to maintain integrity and viability. Free-living cells are further challenged by their direct interaction with the environment and in many cases maintain a resilient cell wall to stay alive under widely varying conditions. For these organisms, stringent and highly localized control of the cell wall's remodeling and expansion is crucial for cell growth and reproduction. In the budding yeast Saccharomyces cerevisiae the RNA binding protein Ssd1 helps control cell wall remodeling by repressing translation of proteins involved in wall expansion. Ssd1 is itself negatively regulated by the highly conserved Ndr/LATS protein kinase Cbk1. We sought to identify mRNA regions that confer Ssd1-mediated translational control. After validating a GFP reporter system as a readout of Ssd1 activity we found that 3′ untranslated regions of the known Ssd1 targets CTS1, SIM1 and UTH1 are sufficient for Cbk1-regulated translational control. The 5′ untranslated region of UTH1 also facilitated Ssd1-mediated translational control in a heterologous context. The CTS1 and SIM1 3′ untranslated regions confer Ssd1 binding, and the SIM1 3′ untranslated region improves Ssd1 immunoprecipitation of the endogenous SIM1 transcript. However, SIM1's 3′ untranslated region is not essential for Ssd1-regulated control of the message's translation. We propose that Ssd1 regulates translation of its target message primarily through UTRs and the SIM1 message through multiple potential points of interaction, permitting fine translational control in various contexts.
Collapse
Affiliation(s)
- Antony G. Wanless
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Yuan Lin
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Eric L. Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Melamed D, Young DL, Gamble CE, Miller CR, Fields S. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA (NEW YORK, N.Y.) 2013; 19:1537-51. [PMID: 24064791 PMCID: PMC3851721 DOI: 10.1261/rna.040709.113] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding domain in eukaryotes. Differences in RRM sequences dictate, in part, both RNA and protein-binding specificities and affinities. We used a deep mutational scanning approach to study the sequence-function relationship of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein (Pab1). By scoring the activity of more than 100,000 unique Pab1 variants, including 1246 with single amino acid substitutions, we delineated the mutational constraints on each residue. Clustering of residues with similar mutational patterns reveals three major classes, composed principally of RNA-binding residues, of hydrophobic core residues, and of the remaining residues. The first class also includes a highly conserved residue not involved in RNA binding, G150, which can be mutated to destabilize Pab1. A comparison of the mutational sensitivity of yeast Pab1 residues to their evolutionary conservation reveals that most residues tolerate more substitutions than are present in the natural sequences, although other residues that tolerate fewer substitutions may point to specialized functions in yeast. An analysis of ∼40,000 double mutants indicates a preference for a short distance between two mutations that display an epistatic interaction. As examples of interactions, the mutations N139T, N139S, and I157L suppress other mutations that interfere with RNA binding and protein stability. Overall, this study demonstrates that living cells can be subjected to a single assay to analyze hundreds of thousands of protein variants in parallel.
Collapse
Affiliation(s)
- Daniel Melamed
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - David L. Young
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Caitlin E. Gamble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christina R. Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
- Corresponding authorE-mail
| |
Collapse
|
20
|
Zhang C, Lee DJ, Chiang YC, Richardson R, Park S, Wang X, Laue TM, Denis CL. The RRM1 domain of the poly(A)-binding protein from Saccharomyces cerevisiae is critical to control of mRNA deadenylation. Mol Genet Genomics 2013; 288:401-12. [PMID: 23793387 DOI: 10.1007/s00438-013-0759-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The poly(A)-binding protein PAB1 from the yeast Saccharomyces cerevisiae plays an important role in controlling mRNA deadenylation rates. Deletion of either its RRM1 or proline-rich domain (P domain) severely restricts deadenylation and slows mRNA degradation. Because these large deletions could be having unknown effects on the structure of PAB1, different strategies were used to determine the importance of the RRM1 and P domains to deadenylation. Since the P domain is quite variable in size and sequence among eukaryotes, P domains from two human PABPCs and from Xenopus were substituted for that of PAB1. The resultant PAB1 hybrid proteins, however, displayed limited or no difference in mRNA deadenylation as compared with PAB1. In contrast to the P domain, the RRM1 domain is highly conserved across species, and a systematic mutagenesis of the RRM1 domain was undertaken to identify its functional regions. Several mutations along the RNA-binding surface of RRM1 inhibited deadenylation, whereas one set of mutations on its exterior non-RNA binding surface shifted deadenylation from a slow distributive process to a rapid processive deadenylation. These results suggest that the RRM1 domain is the more critical region of PAB1 for controlling deadenylation and consists of at least two distinguishable functional regions.
Collapse
Affiliation(s)
- Chongxu Zhang
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | | | | | | | | | | | | | | |
Collapse
|