1
|
Salgotra RK, Stewart CN. Functional Markers for Precision Plant Breeding. Int J Mol Sci 2020; 21:E4792. [PMID: 32640763 PMCID: PMC7370099 DOI: 10.3390/ijms21134792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. G3-GENES GENOMES GENETICS 2019; 9:3297-3314. [PMID: 31405891 PMCID: PMC6778803 DOI: 10.1534/g3.119.400378] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modern SNP genotyping technologies allow measurement of the relative abundance of different alleles for a given locus and consequently estimation of their allele dosage, opening a new road for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids, there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in full-sib populations of autopolyploid species with even ploidy levels for a set of SNP markers using hidden Markov models. Our method uses efficient two-point procedures to reduce the search space for the best linkage phase configuration and reestimate the final parameters by maximizing the likelihood of the Markov chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid, autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results show the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and octaploid populations.
Collapse
|
3
|
Mollinari M, Garcia AAF. Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. G3 (BETHESDA, MD.) 2019. [PMID: 31405891 DOI: 10.1101/415232v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Modern SNP genotyping technologies allow measurement of the relative abundance of different alleles for a given locus and consequently estimation of their allele dosage, opening a new road for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids, there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in full-sib populations of autopolyploid species with even ploidy levels for a set of SNP markers using hidden Markov models. Our method uses efficient two-point procedures to reduce the search space for the best linkage phase configuration and reestimate the final parameters by maximizing the likelihood of the Markov chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid, autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results show the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and octaploid populations.
Collapse
Affiliation(s)
- Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, and
| | | |
Collapse
|
4
|
Khan MZ, Takemura M, Maoka T, Otani M, Misawa N. Carotenoid analysis of sweetpotato Ipomoea batatas and functional identification of its lycopene β- and ε-cyclase genes. ACTA ACUST UNITED AC 2016; 71:313-322. [DOI: 10.1515/znc-2016-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/02/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Sweetpotato Ipomoea batatas is known as a hexaploid species. Here, we analyzed carotenoids contained in the leaves and tubers of sweetpotato cultivars ‘White Star’ (WS) and W71. These cultivars were found to contain several carotenoids unique to sweetpotato tubers such as β-carotene-5,6,5′,8′-diepoxide and β-carotene-5,8-epoxide. Next, we isolated two kinds of carotene cyclase genes that encode lycopene β- and ε-cyclases from the WS and W71 leaves, by RT-PCR and subsequent RACE. Two and three lycopene β-cyclase gene sequences were, respectively, isolated from WS, named IbLCYb1, 2, and from W71, IbLCYb3, 4, 5. Meanwhile, only a single lycopene ε-cyclase gene sequence, designated IbLCYe, was isolated from both WS and W71. These genes were separately introduced into a lycopene-synthesizing Escherichia coli transformed with the Pantoea ananatis crtE, crtB and crtI genes, followed by HPLC analysis. β-Carotene was detected in E. coli cells that carried IbLCYb1-4, indicating that the IbLCYb1-4 genes encode lycopene β-cyclase. Meanwhile, the introduction of IbLCYe into the lycopene-synthesizing E. coli led to efficient production of δ-carotene with a monocyclic ε-ring, providing evidence that the IbLCYe gene codes for lycopene ε-(mono)cyclase. Expression of the β- and ε-cyclase genes was analyzed as well.
Collapse
Affiliation(s)
- Muhammad Zubair Khan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Shimogamo-morimotocho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Motoyasu Otani
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan , Phone: +81-76-227-7525, Fax: +81-76-227-7557
| |
Collapse
|