1
|
Clark ZS, O'Connor M. Suppressor analysis links trans-translation and ribosomal protein uS7 to RluD function in Escherichia coli. Biochem Biophys Res Commun 2024; 700:149584. [PMID: 38295647 PMCID: PMC10878134 DOI: 10.1016/j.bbrc.2024.149584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD- bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth. Here we describe two weaker suppressors, affecting rpsG, encoding ribosomal protein uS7 and ssrA, encoding tmRNA. In K-12 strains of E. coli, rpsG terminates at a TGA codon. In the suppressor strain, alteration of an upstream CAG to a TAG stop codon results in a shortened uS7 and partial alleviation of slow growth, likely by replacing an inefficient TGA stop codon with the more efficient TAG. Inefficient termination events, such as occurs in some rluD- strains, are targeted by trans-translation. Inactivation of the ssrA gene in slow-growing, termination-defective mutants lacking RluD and RF3, also partially restores robust growth, most probably by preventing destruction of completed polypeptides on ribosomes at slow-terminating stop codons. Finally, an additional role for RluD has been proposed, independent of its pseudouridine synthase activity. This is based on the observation that plasmids expressing catalytically dead (D139N or D139T) RluD proteins could nonetheless restore robust growth to an E. coli K-12 rluD- mutant. However, newly constructed D139N and D139T rluD plasmids do not have any growth-restoring activity and the original observations were likely due to the appearance of suppressors.
Collapse
Affiliation(s)
- Zachary S Clark
- Division of Biology and Biomedical Systems, School of Science and Engineering, 306 Spencer Hall, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO, 64110, USA
| | - Michael O'Connor
- Division of Biology and Biomedical Systems, School of Science and Engineering, 306 Spencer Hall, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO, 64110, USA.
| |
Collapse
|
2
|
Prabhakar A, Pavlov MY, Zhang J, Indrisiunaite G, Wang J, Lawson M, Ehrenberg M, Puglisi JD. Dynamics of release factor recycling during translation termination in bacteria. Nucleic Acids Res 2023; 51:5774-5790. [PMID: 37102635 PMCID: PMC10287982 DOI: 10.1093/nar/gkad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305-5126, USA
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Michael R Lawson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| |
Collapse
|
3
|
Younkin AD, Gregory ST, O'Connor M. Alterations in the ribosomal protein bL12 of E. coli affecting the initiation, elongation and termination of protein synthesis. Biochimie 2020; 175:173-180. [PMID: 32569619 DOI: 10.1016/j.biochi.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
In bacteria, ribosomal protein bL12 forms the prominent stalk structure on the ribosome and binds to multiple, distinct translational GTPase factors during the sequential steps of translation. Using a genetic selection in E. coli for altered readthrough of UGA stop codons, we have isolated seven different mutations affecting the C-terminal domain of the protein that forms the interaction surface with translation factors. Analysis of these altered proteins, along with four additional alterations previously shown to affect IF2-ribosome interactions, indicates that multiple steps of translation are affected, consistent with bL12's interaction with multiple factors. Surprisingly, deletion of the release factor GTPase, RF3, has relatively little effect on bL12-promoted stop codon readthrough, suggesting that other steps in termination are also influenced by bL12.
Collapse
Affiliation(s)
- Adam D Younkin
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Michael O'Connor
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
4
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
5
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
6
|
Post-termination Ribosome Intermediate Acts as the Gateway to Ribosome Recycling. Cell Rep 2018; 20:161-172. [PMID: 28683310 DOI: 10.1016/j.celrep.2017.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 01/24/2023] Open
Abstract
During termination of translation, the nascent peptide is first released from the ribosome, which must be subsequently disassembled into subunits in a process known as ribosome recycling. In bacteria, termination and recycling are mediated by the translation factors RF, RRF, EF-G, and IF3, but their precise roles have remained unclear. Here, we use single-molecule fluorescence to track the conformation and composition of the ribosome in real time during termination and recycling. Our results show that peptide release by RF induces a rotated ribosomal conformation. RRF binds to this rotated intermediate to form the substrate for EF-G that, in turn, catalyzes GTP-dependent subunit disassembly. After the 50S subunit departs, IF3 releases the deacylated tRNA from the 30S subunit, thus preventing reassembly of the 70S ribosome. Our findings reveal the post-termination rotated state as the crucial intermediate in the transition from termination to recycling.
Collapse
|
7
|
Pseudouridine-Free Escherichia coli Ribosomes. J Bacteriol 2018; 200:JB.00540-17. [PMID: 29180357 DOI: 10.1128/jb.00540-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
Pseudouridine (Ψ) is present at conserved, functionally important regions in the ribosomal RNAs (rRNAs) from all three domains of life. Little, however, is known about the functions of Ψ modifications in bacterial ribosomes. An Escherichia coli strain has been constructed in which all seven rRNA Ψ synthases have been inactivated and whose ribosomes are devoid of all Ψs. Surprisingly, this strain displays only minor defects in ribosome biogenesis and function, and cell growth is only modestly affected. This is in contrast to a strong requirement for Ψ in eukaryotic ribosomes and suggests divergent roles for rRNA Ψ modifications in these two domains.IMPORTANCE Pseudouridine (Ψ) is the most abundant posttranscriptional modification in RNAs. In the ribosome, Ψ modifications are typically located at conserved, critical regions, suggesting they play an important functional role. In eukarya and archaea, rRNAs are modified by a single pseudouridine synthase (PUS) enzyme, targeted to rRNA via a snoRNA-dependent mechanism, while bacteria use multiple stand-alone PUS enzymes. Disruption of Ψ modification of rRNA in eukarya seriously impairs ribosome function and cell growth. We have constructed an E. coli multiple deletion strain lacking all Ψ modifications in rRNA. In contrast to the equivalent eukaryotic mutants, the E. coli strain is only modestly affected in growth, decoding, and ribosome biogenesis, indicating a differential requirement for Ψ modifications in these two domains.
Collapse
|
8
|
Prabhakar A, Choi J, Wang J, Petrov A, Puglisi JD. Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination. Protein Sci 2017; 26:1352-1362. [PMID: 28480640 DOI: 10.1002/pro.3190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
As the universal machine that transfers genetic information from RNA to protein, the ribosome synthesizes proteins with remarkably high fidelity and speed. This is a result of the accurate and efficient decoding of mRNA codons via multistep mechanisms during elongation and termination stages of translation. These mechanisms control how the correct sense codon is recognized by a tRNA for peptide elongation, how the next codon is presented to the decoding center without change of frame during translocation, and how the stop codon is discriminated for timely release of the nascent peptide. These processes occur efficiently through coupling of chemical energy expenditure, ligand interactions, and conformational changes. Understanding this coupling in detail required integration of many techniques that were developed in the past two decades. This multidisciplinary approach has revealed the dynamic nature of translational control and uncovered how external cellular factors such as tRNA abundance and mRNA modifications affect the synthesis of the protein product. Insights from these studies will aid synthetic biology and therapeutic approaches to translation.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Program in Biophysics, Stanford University, Stanford, California, 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Department of Applied Physics, Stanford University, Stanford, California, 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
9
|
Kamath D, Allgeyer BB, Gregory ST, Bielski MC, Roelofsz DM, Sabapathypillai SL, Vaid N, O'Connor M. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation. Biochimie 2017; 138:194-201. [PMID: 28483689 DOI: 10.1016/j.biochi.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 01/28/2023]
Abstract
Ribosomal protein uS4 is an essential ribosomal component involved in multiple functions, including mRNA decoding. Structural analyses indicate that during decoding, the interface between the C-terminus of uS4 and protein uS5 is disrupted and in agreement with this, C-terminal uS4 truncation mutants are readily isolated on the basis of their increased miscoding phenotypes. The same mutants can also display defects in small subunit assembly and 16S rRNA processing and some are temperature sensitive for growth. Starting with one such temperature sensitive Escherichia coli uS4 mutant, we have isolated temperature insensitive derivatives carrying additional, intragenic mutations that restore the C-terminus and ameliorate the ribosomal defects. At least one of these suppressors has no detectable ribosome biogenesis phenotype, yet still miscodes, suggesting that the C-terminal requirements for ribosome assembly are less rigid than for mRNA decoding. In contrast to the uS4 C-terminal mutants that increase miscoding, two Salmonella enterica uS4 mutants with altered C-termini have been reported as being error-restrictive. Here, reconstruction experiments demonstrate that contrary to the previous reports, these mutants have a distinct error-prone, increased misreading phenotype, consistent with the behavior of the equivalent E. coli mutants and their likely structural effects on uS4-uS5 interactions.
Collapse
Affiliation(s)
- Divya Kamath
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Benjamin B Allgeyer
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Margaret C Bielski
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - David M Roelofsz
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sharon L Sabapathypillai
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikhil Vaid
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
10
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
The Loop 2 Region of Ribosomal Protein uS5 Influences Spectinomycin Sensitivity, Translational Fidelity, and Ribosome Biogenesis. Antimicrob Agents Chemother 2017; 61:AAC.01186-16. [PMID: 27855073 DOI: 10.1128/aac.01186-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ribosomal protein uS5 is an essential component of the small ribosomal subunit that is involved in subunit assembly, maintenance of translational fidelity, and the ribosome's response to the antibiotic spectinomycin. While many of the characterized uS5 mutations that affect decoding map to its interface with uS4, more recent work has shown that residues distant from the uS4-uS5 interface can also affect the decoding process. We targeted one such interface-remote area, the loop 2 region (residues 20 to 31), for mutagenesis in Escherichia. coli and generated 21 unique mutants. A majority of the loop 2 alterations confer resistance to spectinomycin and affect the fidelity of translation. However, only a minority show altered rRNA processing or ribosome biogenesis defects.
Collapse
|
12
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Svidritskiy E, Korostelev AA. Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 2015; 23:2155-61. [PMID: 26412335 DOI: 10.1016/j.str.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022]
Abstract
Translation initiation in the P site occasionally occurs at atypical (non-AUG) start codons, including those forming a mismatch in the third (wobble) position. During elongation, however, a pyrimidine-pyrimidine wobble mismatch may trigger a translation quality-control mechanism, whereby the P-site mismatch is thought to perturb the downstream A-site codon or the decoding center, thereby reducing translation fidelity and inducing termination of aberrant translation. We report a crystal structure of the 70S initiation complex containing an AUC codon in the ribosomal P site. Remarkably, the ribosome stabilizes the mismatched codon-anticodon helix, arranging a normally disruptive cytosine-cytosine pair into a Watson-Crick-like conformation. Translation-competent conformations of the tRNA, mRNA, and decoding center suggest that a P-site wobble-position mismatch in the 70S initiation complex does not pre-arrange the mRNA or decoding center to favor subsequent miscoding events.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|