1
|
Zimowska GJ, Xavier N, Qadri M, Handler AM. A transposon-based genetic marker for conspecific identity within the Bactrocera dorsalis species complex. Sci Rep 2024; 14:1924. [PMID: 38253542 PMCID: PMC10803768 DOI: 10.1038/s41598-023-51068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Here we describe a molecular approach to assess conspecific identity that relies on the comparison of an evolved mutated transposable element sequence and its genomic insertion site in individuals from closely related species. This was explored with the IFP2 piggyBac transposon, originally discovered in Trichoplusia ni as a 2472 bp functional element, that was subsequently found as mutated elements in seven species within the Bactrocera dorsalis species complex. In a B. dorsalis [Hendel] strain collected in Kahuku, Hawaii, a degenerate 2420 bp piggyBac sequence (pBacBd-Kah) having ~ 94.5% sequence identity to IFP2 was isolated, and it was reasoned that common species, or strains within species, should share the same evolved element and its precise genomic insertion site. To test this assumption, PCR using primers to pBacBd-Kah and adjacent genomic sequences was used to isolate and compare homologous sequences in strains of four sibling species within the complex. Three of these taxa, B. papayae, B. philippinensis, and B. invadens, were previously synonymized with B. dorsalis, and found to share nearly identical pBacBd-Kah homologous elements (> 99% nucleotide identity) within the identical insertion site consistent with conspecific species. The fourth species tested, B. carambolae, considered to be a closely related yet independent species sympatric with B. dorsalis, also shared the pBacBd-Kah sequence and insertion site in one strain from Suriname, while another divergent pBacBd-Kah derivative, closer in identity to IFP2, was found in individuals from French Guiana, Bangladesh and Malaysia. This data, along with the absence of pBacBd-Kah in distantly related Bactrocera, indicates that mutated descendants of piggyBac, as well as other invasive mobile elements, could be reliable genomic markers for common species identity.
Collapse
Affiliation(s)
- Grazyna J Zimowska
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nirmala Xavier
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masroor Qadri
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alfred M Handler
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
2
|
Lozano-Arce D, García T, Gonzalez-Garcia LN, Guyot R, Chacón-Sánchez MI, Duitama J. Selection signatures and population dynamics of transposable elements in lima bean. Commun Biol 2023; 6:803. [PMID: 37532823 PMCID: PMC10397206 DOI: 10.1038/s42003-023-05144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
The domestication process in lima bean (Phaseolus lunatus L.) involves two independent events, within the Mesoamerican and Andean gene pools. This makes lima bean an excellent model to understand convergent evolution. The mechanisms of adaptation followed by Mesoamerican and Andean landraces are largely unknown. Genes related to these adaptations can be selected by identification of selective sweeps within gene pools. Previous genetic analyses in lima bean have relied on Single Nucleotide Polymorphism (SNP) loci, and have ignored transposable elements (TEs). Here we show the analysis of whole-genome sequencing data from 61 lima bean accessions to characterize a genomic variation database including TEs and SNPs, to associate selective sweeps with variable TEs and to predict candidate domestication genes. A small percentage of genes under selection are shared among gene pools, suggesting that domestication followed different genetic avenues in both gene pools. About 75% of TEs are located close to genes, which shows their potential to affect gene functions. The genetic structure inferred from variable TEs is consistent with that obtained from SNP markers, suggesting that TE dynamics can be related to the demographic history of wild and domesticated lima bean and its adaptive processes, in particular selection processes during domestication.
Collapse
Affiliation(s)
- Daniela Lozano-Arce
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Tatiana García
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura Natalia Gonzalez-Garcia
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Maria Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
3
|
Bhat RS, Shirasawa K, Monden Y, Yamashita H, Tahara M. Developing Transposable Element Marker System for Molecular Breeding. Methods Mol Biol 2020; 2107:233-251. [PMID: 31893450 DOI: 10.1007/978-1-0716-0235-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.
Collapse
Affiliation(s)
- R S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, India.
| | - K Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Y Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - H Yamashita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - M Tahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|