1
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
2
|
Darshan K, Aggarwal R, Bashyal BM, Singh J, Saharan MS, Gurjar MS, Solanke AU. Characterization and development of transcriptome-derived novel EST-SSR markers to assess genetic diversity in Chaetomium globosum. 3 Biotech 2023; 13:379. [PMID: 37900266 PMCID: PMC10600081 DOI: 10.1007/s13205-023-03794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Chaetomium globosum Kunze, an internationally recognized biocontrol fungus. It mycoparasitizes various plant pathogens and produce antifungal metabolites to suppress the growth of pathogenic fungi. Lack of detailed genome level diversity studies has delimited the development and utilization of potential C. globosum strains. The present study was taken to reveal the distribution, identification, and characterization of expressed sequence tag-simple sequence repeats (EST-SSRs) in C. globosum. RNA-Seq experiment was performed for C. globosum potential isolate Cg2 (AY429049) using Illumina HiSeq 2500. Reference-guided de novo assembly yielded 45,582 transcripts containing 27,957 unigenes. We generated a new set of 8485 EST-SSR markers distributed in 5908 unigene sequences with one SSR locus distribution density per 6.1 kb. Six distinct classes of SSR repeat motifs were identified. The most abundant were mononucleotide repeats (51.67%), followed by tri-nucleotides (36.61%). Out of 5034 EST-SSR primers, 50 primer pairs were selected and validated for the polymorphic study of 15 C. globosum isolates. Twenty-two SSR markers showed average genetic polymorphism among C. globosum isolates. The number of alleles (Na) per marker ranges from 2 to 4, with a total of 74 alleles detected for 22 markers with a mean polymorphism information content (PIC) value of 0.4. UPGMA hierarchical clustering analysis generated three main clusters of C. globosum isolates and exhibited a lower similarity index range from 0.59 to 0.85. Thus, the newly developed EST-SSR markers could replace traditional methods for determining diversity. The study will also enhance the genomic research in C. globosum to explore its biocontrol potential against phytopathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03794-7.
Collapse
Affiliation(s)
- K. Darshan
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Forest Protection Division, ICFRE-Tropical Forest Research Institute, Jabalpur, Madhya Pradesh 482021 India
| | - Rashmi Aggarwal
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Jagmohan Singh
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. S. Saharan
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. S. Gurjar
- Division of Plant Pathology, Fungal Molecular Biology Laboratory, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, ICAR-IARI, New Delhi, 110012 India
| |
Collapse
|
3
|
Modern Approaches for Transcriptome Analyses in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:11-50. [DOI: 10.1007/978-3-030-80352-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng‐Frimpong R, Miningou A, Ojiewo C, Varshney RK. Genetics, genomics and breeding of groundnut ( Arachis hypogaea L.). PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:425-444. [PMID: 31598026 PMCID: PMC6774334 DOI: 10.1111/pbr.12645] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
Groundnut is an important food and oil crop in the semiarid tropics, contributing to household food consumption and cash income. In Asia and Africa, yields are low attributed to various production constraints. This review paper highlights advances in genetics, genomics and breeding to improve the productivity of groundnut. Genetic studies concerning inheritance, genetic variability and heritability, combining ability and trait correlations have provided a better understanding of the crop's genetics to develop appropriate breeding strategies for target traits. Several improved lines and sources of variability have been identified or developed for various economically important traits through conventional breeding. Significant advances have also been made in groundnut genomics including genome sequencing, marker development and genetic and trait mapping. These advances have led to a better understanding of the groundnut genome, discovery of genes/variants for traits of interest and integration of marker-assisted breeding for selected traits. The integration of genomic tools into the breeding process accompanied with increased precision of yield trialing and phenotyping will increase the efficiency and enhance the genetic gain for release of improved groundnut varieties.
Collapse
Affiliation(s)
- Haile Desmae
- International Crop Research Institute for the Semi‐Arid Tropics (ICRISAT)BamakoMali
| | | | | | | | | | | | - Omari Mponda
- Division of Research and Development (DRD)Tanzania Agricultural Research Institute (TARI) ‐ NaliendeleMtwaraTanzania
| | - David Okello
- National Agricultural Research Organization (NARO)EntebbeUganda
| | | | | | | | - Amos Miningou
- Institut National d'Environnement et de Recherches Agricoles (INERA)OuagadougouBurkina Faso
| | | | | |
Collapse
|
5
|
Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, Sahebi M, Azizi P. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 2019; 9:3047. [PMID: 30816255 PMCID: PMC6395698 DOI: 10.1038/s41598-019-39944-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - M Y Rafii
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Stefaan P O Werbrouck
- Laboratory of Applied Science In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, University Ghent, Valentin Vaerwyckweg 1, BE-9000, Gent, Belgium
| | - Chee How Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Srinivasan R, Abney MR, Lai PC, Culbreath AK, Tallury S, Leal-Bertioli SCM. Resistance to Thrips in Peanut and Implications for Management of Thrips and Thrips-Transmitted Orthotospoviruses in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:1604. [PMID: 30459792 PMCID: PMC6232880 DOI: 10.3389/fpls.2018.01604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 05/31/2023]
Abstract
Thrips are major pests of peanut (Arachis hypogaea L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as Tomato spotted wilt virus (TSWV) and Groundnut bud necrosis virus (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses. Consequently, cultivars with moderate field resistance to viruses exist, but not much is known about host resistance to thrips. Integrating host plant resistance to thrips in peanut could suppress thrips feeding damage and reduce virus transmission, will decrease insecticide usage, and enhance sustainability in the production system. This review focuses on details of thrips resistance in peanut and identifies future directions for incorporating thrips resistance in peanut cultivars. Research on thrips-host interactions in peanut is predominantly limited to field evaluations of feeding damage, though, laboratory studies have revealed that peanut cultivars could differentially affect thrips feeding and thrips biology. Many runner type cultivars, field resistant to TSWV, representing diverse pedigrees evaluated against thrips in the greenhouse revealed that thrips preferred some cultivars over others, suggesting that antixenosis "non-preference" could contribute to thrips resistance in peanut. In other crops, morphological traits such as leaf architecture and waxiness and spectral reflectance have been associated with thrips non-preference. It is not clear if foliar morphological traits in peanut are associated with reduced preference or non-preference of thrips and need to be evaluated. Besides thrips non-preference, thrips larval survival to adulthood and median developmental time were negatively affected in some peanut cultivars and in a diploid peanut species Arachis diogoi (Hoehne) and its hybrids with a Virginia type cultivar, indicating that antibiosis (negative effects on biology) could also be a factor influencing thrips resistance in peanut. Available field resistance to orthotospoviruses in peanut is not complete, and cultivars can suffer substantial yield loss under high thrips and virus pressure. Integrating thrips resistance with available virus resistance would be ideal to limit losses. A discussion of modern technologies such as transgenic resistance, marker assisted selection and RNA interference, and future directions that could be undertaken to integrate resistance to thrips and to orthotospoviruses in peanut cultivars is included in this article.
Collapse
Affiliation(s)
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Pin-Chu Lai
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Shyam Tallury
- United States Department of Agriculture – Agricultural Research Service, Griffin, GA, United States
| | | |
Collapse
|
7
|
You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. FRONTIERS IN PLANT SCIENCE 2018; 9:104. [PMID: 29467780 PMCID: PMC5808122 DOI: 10.3389/fpls.2018.00104] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liping Xu
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Jianping Wang
| |
Collapse
|
8
|
Classical and Molecular Approaches for Mapping of Genes and Quantitative Trait Loci in Peanut. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-63935-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
9
|
Yin D, Wang Y, Zhang X, Ma X, He X, Zhang J. Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. Sci Rep 2017; 7:11649. [PMID: 28912544 PMCID: PMC5599657 DOI: 10.1038/s41598-017-12026-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
ABSRACT Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. Wild Arachis spp. are potental sources of novel genes for the genetic improvement of cultivated peanut. Understanding the genetic relationships with cultivated peanut is important for the efficient use of wild species in breeding programmes. However, for this genus, only a few genetic resources have been explored so far. In this study, new chloroplast genomic resources have been developed for the genus Arachis based on whole chloroplast genomes from seven species that were sequenced using next-generation sequencing technologies. The chloroplast genomes ranged in length from 156,275 to 156,395 bp, and their gene contents, gene orders, and GC contents were similar to those for other Fabaceae species. Comparative analyses among the seven chloroplast genomes revealed 643 variable sites that included 212 singletons and 431 parsimony-informative sites. We also identified 101 SSR loci and 85 indel mutation events. Thirty-seven SSR loci were found to be polymorphic by in silico comparative analyses. Eleven highly divergent DNA regions, suitable for phylogenetic and species identification, were detected in the seven chloroplast genomes. A molecular phylogeny based on the complete chloroplast genome sequences provided the best resolution of the seven Arachis species.
Collapse
Affiliation(s)
- Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yun Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xingli Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyan He
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianhang Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
10
|
Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Mol Genet Genomics 2017; 292:955-965. [PMID: 28492983 DOI: 10.1007/s00438-017-1327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Wen Fan
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dante Leventini
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Barry L Tillman
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
- Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
11
|
Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SCM, Pandey MK, Vaughn J, Abernathy B, Barkley NA, Hovav R, Burow M, Nayak SN, Chitikineni A, Isleib TG, Holbrook CC, Jackson SA, Varshney RK, Ozias-Akins P. Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. MOLECULAR PLANT 2017; 10:309-322. [PMID: 27993622 PMCID: PMC5315502 DOI: 10.1016/j.molp.2016.11.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
Peanut (Arachis hypogaea; 2n = 4x = 40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. To facilitate high-throughput genotyping of Arachis species, 20 genotypes were re-sequenced and genome-wide single nucleotide polymorphisms (SNPs) were selected to develop a large-scale SNP genotyping array. For flexibility in genotyping applications, SNPs polymorphic between tetraploid and diploid species were included for use in cultivated and interspecific populations. A set of 384 accessions was used to test the array resulting in 54 564 markers that produced high-quality polymorphic clusters between diploid species, 47 116 polymorphic markers between cultivated and interspecific hybrids, and 15 897 polymorphic markers within A. hypogaea germplasm. An additional 1193 markers were identified that illuminated genomic regions exhibiting tetrasomic recombination. Furthermore, a set of elite cultivars that make up the pedigree of US runner germplasm were genotyped and used to identify genomic regions that have undergone positive selection. These observations provide key insights on the inclusion of new genetic diversity in cultivated peanut and will inform the development of high-resolution mapping populations. Due to its efficiency, scope, and flexibility, the newly developed SNP array will be very useful for further genetic and breeding applications in Arachis.
Collapse
Affiliation(s)
- Josh Clevenger
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Gaurav Agarwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - David J Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA; University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA; Embrapa Genetic Resources and Biotechnology, 70770-917 Brasília, DF, Brazil
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Justin Vaughn
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Brian Abernathy
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | | | - Ran Hovav
- Agricultural Research Organization, Plant Sciences Institute, 7528809 Rishon LeZion, Israel
| | - Mark Burow
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122, USA
| | - Spurthi N Nayak
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thomas G Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Box 7629, Raleigh, NC 28695-7629, USA
| | | | - Scott A Jackson
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA.
| |
Collapse
|
12
|
|
13
|
Tseng YC, Tillman BL, Peng Z, Wang J. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP(TM) '113'. BMC Genet 2016; 17:128. [PMID: 27600750 PMCID: PMC5012072 DOI: 10.1186/s12863-016-0435-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/25/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Spotted wilt caused by tomato spotted wilt virus (TSWV) is one of the major peanut (Arachis hypogaea L.) diseases in the southeastern United States. Occurrence, severity, and symptoms of spotted wilt disease are highly variable from season to season, making it difficult to efficiently evaluate breeding populations for resistance. Molecular markers linked to spotted wilt resistance could overcome this problem and allow selection of resistant lines regardless of environmental conditions. Florida-EP(TM) '113' is a spotted wilt resistant cultivar with a significantly lower infection frequency. However, the genetic basis is still unknown. The objective of this study is to map the major quantitative trait loci (QTLs) linked to spotted wilt resistance in Florida-EP(TM) '113'. RESULTS Among 2,431 SSR markers located across the whole peanut genome screened between the two parental lines, 329 were polymorphic. Those polymorphic markers were used to further genotype a representative set of individuals in a segregating population. Only polymorphic markers on chromosome A01 showed co-segregation between genotype and phenotype. Genotyping by sequencing (GBS) of the representative set of individuals in the segregating population also depicted a strong association between several SNPs on chromosome A01 and the trait, indicating a major QTL on chromosome A01. Therefore marker density was enriched on the A01 chromosome. A linkage map with 23 makers on chromosome A01 was constructed, showing collinearity with the physical map. Combined with phenotypic data, a major QTL flanked by marker AHGS4584 and GM672 was identified on chromosome A01, with up to 22.7 % PVE and 9.0 LOD value. CONCLUSION A major QTL controlling the spotted wilt resistance in Florida-EP(TM) '113' was identified. The resistance is most likely contributed by PI 576638, a hirsuta botanical-type line, introduced from Mexico with spotted wilt resistance. The flanking markers of this QTL can be used for further fine mapping and marker assisted selection in peanut breeding programs.
Collapse
Affiliation(s)
- Yu-Chien Tseng
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446 USA
| | - Barry L. Tillman
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446 USA
| | - Ze Peng
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
| | - Jianping Wang
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|