1
|
Tai J, Hu H, Liu J, Lu W, Dan T. Multi-omics analysis reveals the mechanism for galactose metabolism in mutant Streptococcus thermophilus IMAU20551Y. Curr Res Food Sci 2025; 10:101017. [PMID: 40161308 PMCID: PMC11950750 DOI: 10.1016/j.crfs.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
Streptococcus thermophilus (S. thermophilus) is a species widely used in the dairy industry to accelerate the acidification rate and improve the texture and flavour characteristics of dairy products. However, most S. thermophilus have galactose-negative (Gal-) phenotypes, which can lead to accumulation of free galactose in fermented dairy products. In a previous study, a mutant of S. thermophilus IMAU20551Y was obtained by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis in which key enzymes related to galactose metabolism were significantly changed compared with the wild type. β-galactosidase and galactokinase activity were higher in the mutant while glucokinase and pyruvate kinase activities were significantly decreased compared with the wild type. In this study, the ability of the mutant to metabolize galactose was verified by high performance liquid chromatography (HPLC), and the mechanism for enhanced galactose metabolism elucidated by multi-omics analysis. HPLC analysis showed that accumulation of galactose in milk fermented by mutant S. thermophilus IMAU20551Y was reduced by 41.4%, compared with the wild type. Although no mutations in gene sequences associated with galactose metabolism were detected by genome sequencing, transcriptomic data showed up-regulation in expression of galM, galK, galT, galE (associated with the Leloir pathway) and LacI family transcriptional regulator GalR, resulting in enhanced galactose metabolism in the mutant. This study provides a reference for genetic engineering modification of galactose-positive (Gal+) S. thermophilus, which is expected to be used as a starter for the production of low galactose fermented dairy products.
Collapse
Affiliation(s)
- Jiahui Tai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haimin Hu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jinhui Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenhui Lu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
2
|
Nie L, He Y, Hu L, Zhu X, Wu X, Zhang B. Improvement in L-ornithine production from mannitol via transcriptome-guided genetic engineering in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:97. [PMID: 36123702 PMCID: PMC9484086 DOI: 10.1186/s13068-022-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND L-Ornithine is an important medicinal intermediate that is mainly produced by microbial fermentation using glucose as the substrate. To avoid competition with human food resources, there is an urgent need to explore alternative carbon sources for L-ornithine production. In a previous study, we constructed an engineered strain, Corynebacterium glutamicum MTL13, which produces 54.56 g/L of L-ornithine from mannitol. However, compared with the titers produced using glucose as a substrate, the results are insufficient, and further improvement is required. RESULTS In this study, comparative transcriptome profiling of MTL01 cultivated with glucose or mannitol was performed to identify novel targets for engineering L-ornithine-producing strains. Guided by the transcriptome profiling results, we modulated the expression of qsuR (encoding a LysR-type regulator QsuR), prpC (encoding 2-methylcitrate synthase PrpC), pdxR (encoding a MocR-type regulator PdxR), acnR (encoding a TetR-type transcriptional regulator AcnR), CGS9114_RS08985 (encoding a hypothetical protein), and CGS9114_RS09730 (encoding a TetR/AcrR family transcriptional regulator), thereby generating the engineered strain MTL25 that can produce L-ornithine at a titer of 93.6 g/L, representing a 71.6% increase as compared with the parent strain MTL13 and the highest L-ornithine titer reported so far for C. glutamicum. CONCLUSIONS This study provides novel indirect genetic targets for enhancing L-ornithine accumulation on mannitol and lays a solid foundation for the biosynthesis of L-ornithine from marine macroalgae, which is farmed globally as a promising alternative feedstock.
Collapse
Affiliation(s)
- Libin Nie
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yutong He
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lirong Hu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiangdong Zhu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Zhou Y, Cui Y, Qu X. Comparative transcriptome analysis for the biosynthesis of antioxidant exopolysaccharide in Streptococcus thermophilus CS6. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5321-5332. [PMID: 35318677 DOI: 10.1002/jsfa.11886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Food grade Streptococcus thermophilus produces biological exopolysaccharides (EPSs) with great potential with respect to catering for higher health-promoting demands; however, how S. thermophilus regulates the biosynthesis of EPS is not completely understood, decelerating the application of these polymers. In our previous study, maltose, soy peptone and initial pH were three key factors of enhancing EPS yield in S. thermophilus CS6. Therefore, we aimed to investigate the regulating mechanisms of EPS biosynthesis in S. thermophilus CS6 via the method of comparative transcriptome and differential carbohydrate metabolism. RESULTS Soy peptone addition (58.6 g L-1 ) and a moderate pH (6.5) contributed to a high bacterial biomass and a high EPS yield (407 mg L-1 ). Maltose, soy peptone and initial pH greatly influenced lactose utilization in CS6. Soy peptone addition induced a high accumulation of mannose and arabinose in intracellular CS6, differential monosaccharide composition (mannose, glucose and arabinose) in EPS and high radical [2,2-diphenyl-1-picrylhydrazyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging activities. Carbohydrate transportation, sugar activation and eps cluster-associated genes were differentially expressed to regulate EPS biosynthesis. Correlation analysis indicated high production of EPSs depended on high expression of lacS, galPMKUTE, pgm, gt2-5&4-1 and epsLM. CONCLUSION The production of antioxidant EPS in S. thermophilus CS6 depended on the regulation of galactose metabolism cluster and eps cluster. The present study recommends a new approach for enhancing EPS production by transcriptomic regulation for further food and health application of EPS. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
4
|
Gamallat Y, Ren X, Meyiah A, Li M, Ren X, Jamalat Y, Song S, Xie L, Ahmad B, Shopit A, Mousa H, Ma Y, Xin Y, Ding D. The immune-modulation and gut microbiome structure modification associated with long-term dietary supplementation of Lactobacillus rhamnosus using 16S rRNA sequencing analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|