1
|
Li Y, Mao X, Shi P, Wan Z, Yang D, Ma T, Wang B, Wang J, Wang J, Zhu R. Microbiome-host interactions in the pathogenesis of acute exacerbation of chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2024; 14:1386201. [PMID: 39091676 PMCID: PMC11291260 DOI: 10.3389/fcimb.2024.1386201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Objective To explore the underlying mechanisms the airway microbiome contributes to Acute Exacerbation of Chronic Obstructive Pulmonary Disease(AECOPD). Methods We enrolled 31 AECOPD patients and 26 stable COPD patients, their sputum samples were collected for metagenomic and RNA sequencing, and then subjected to bioinformatic analyses. The expression of host genes was validated by Quantitative Real-time PCR(qPCR) using the same batch of specimens. Results Our results indicated a higher expression of Rothia mucilaginosa(p=0.015) in the AECOPD group and Haemophilus influenzae(p=0.005) in the COPD group. The Different expressed genes(DEGs) detected were significantly enriched in "type I interferon signaling pathway"(p<0.001, q=0.001) in gene function annotation, and "Cytosolic DNA-sensing pathway"(p=0.002, q=0.024), "Toll-like receptor signaling pathway"(p=0.006, q=0.045), and "TNF signaling pathway"(p=0.006, q=0.045) in KEGG enrichment analysis. qPCR amplification experiment verified that the expression of OASL and IL6 increased significantly in the AECOPD group. Conclusion Pulmonary bacteria dysbiosis may regulate the pathogenesis of AECOPD through innate immune system pathways like type I interferon signaling pathway and Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Yao Li
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| | - Xiaoyan Mao
- Department of Intensive Care Unit, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Pengfei Shi
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| | - Zongren Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ting Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Baolan Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jipeng Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jingjing Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhu
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| |
Collapse
|
2
|
SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke. Curr Issues Mol Biol 2023; 45:799-819. [PMID: 36825998 PMCID: PMC9954820 DOI: 10.3390/cimb45020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; the main risk factors associated with the suffering are tobacco smoking (TS) and chronic exposure to biomass-burning smoke (BBS). Different biological pathways have been associated with COPD, especially xenobiotic or drug metabolism enzymes. This research aims to identify single nucleotide polymorphisms (SNPs) profiles associated with COPD from two expositional sources: tobacco smoking and BBS. One thousand-five hundred Mexican mestizo subjects were included in the study and divided into those exposed to biomass-burning smoke and smokers. Genome-wide exome genotyping was carried out using Infinium Exome-24 kit arrays v. 1.2. Data quality control was conducted using PLINK 1.07. For clinical and demographic data analysis, Rstudio was used. Eight SNPs were found associated with COPD secondary to TS and seven SNPs were conserved when data were analyzed by genotype. When haplotype analyses were carried out, five blocks were predicted. In COPD secondary to BBS, 24 SNPs in MGST3 and CYP family genes were associated. Seven blocks of haplotypes were associated with COPD-BBS. SNPs in the ARNT2 and CYP46A1 genes are associated with COPD secondary to TS, while in the BBS comparison, SNPs in CYP2C8, CYP2C9, MGST3, and MGST1 genes were associated with increased COPD risk.
Collapse
|
3
|
Xu J, Li L, Ren J, Zhong X, Xie C, Zheng A, Abudukadier A, Tuerxun M, Zhang S, Tang L, Hairoula D, Zou X. Whole-Exome Sequencing Implicates the USP34 rs777591A > G Intron Variant in Chronic Obstructive Pulmonary Disease in a Kashi Cohort. Front Cell Dev Biol 2022; 9:792027. [PMID: 35198563 PMCID: PMC8859106 DOI: 10.3389/fcell.2021.792027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic factors are important factors in chronic obstructive pulmonary disease (COPD) onset. Plenty of risk and new causative genes for COPD have been identified in patients of the Chinese Han population. In contrast, we know considerably little concerning the genetics in the Kashi COPD population (Uyghur). This study aims at clarifying the genetic maps regarding COPD susceptibility in Kashi (China). Whole-exome sequencing (WES) was used to analyze three Uyghur families with COPD in Kashi (eight patients and one healthy control). Sanger sequencing was also used to verify the WES results in 541 unrelated Uyghur COPD patients and 534 Uyghur healthy controls. WES showed 72 single nucleotide variants (SNVs), two deletions, and small insertions (InDels), 26 copy number variants (CNVs), and 34 structural variants (SVs), including g.71230620T > A (rs12449210T > A, NC_000,016.10) in the HYDIN axonemal central pair apparatus protein (HYDIN) gene and g.61190482A > G (rs777591A > G, NC_000002.12) in the ubiquitin-specific protease 34 (USP34) gene. After Sanger sequencing, we found that rs777591“AA” under different genetic models except for the dominant model (adjusted OR = 0.8559, 95%CI 0.6568–1.115, p > .05), could significantly reduce COPD risk, but rs12449210T > A was not related to COPD. In stratified analysis of smoking status, rs777591“AA” reduced COPD risk significantly among the nonsmoker group. Protein and mRNA expression of USP34 in cigarette smoke extract-treated BEAS-2b cells increased significantly compared with those in the control group. Our findings associate the USP34 rs777591“AA” genotype as a protector factor in COPD.
Collapse
Affiliation(s)
- Jingran Xu
- Department of Medical College, Shihezi University, Shihezi, China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Aifang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Ayiguzali Abudukadier
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Maimaitiaili Tuerxun
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Sujie Zhang
- Department of Medical College, Shihezi University, Shihezi, China
| | - Lifeng Tang
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Dilare Hairoula
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xiaoguang Zou
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
- *Correspondence: Xiaoguang Zou,
| |
Collapse
|
4
|
Abudureheman Z, Li L, Zhong X, Xu J, Gong H, Yilamujiang S, Ren J, Xie C, Zheng A, Tuerxun D, Abudukadeer A, Aini P, Xu A, Zou X. The rs74794265 SNP of the SREK1 Gene is Associated with COPD in Kashi, China. Int J Chron Obstruct Pulmon Dis 2021; 16:2631-2636. [PMID: 34556983 PMCID: PMC8453436 DOI: 10.2147/copd.s321150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background Kashi city is situated near the Taklamakan desert and has a high incidence rate of chronic obstructive pulmonary disease (COPD). In this study, we aimed to explore the relationship between the SNP of the SREK1 gene locus rs74794265 and the susceptibility to COPD among the Uyghur population in Kashi, XinJiang, China. Methods A total of 541 patients with COPD and 534 control subjects were included in this study. Sanger sequencing was used to analyze the SNP of the SREK1 gene locus rs74794265 site. The distribution of genotypes in different genetic models between the case and control group were analyzed by logistic regression analysis after adjusting for age, sex, and smoking history. Results The SREK1 gene SNP locus rs74794265 included two genotypes, namely, C/C and C/T, of which C/C was the wildtype; The risk of COPD was significantly lower in patients with heterozygous C/T in rs74794265 [p=0.0236, OR=0.3677 (0.1547–0.8742)], and the allele frequency of T was also significantly lower in the patient group [p=0.0245, OR=0.3728 (0.1577–0.8811)]. The heterozygous C/T of rs74794265 among non-smoking COPD patients was significantly lower than other COPD patients [p=0.0298, OR=0.3217 (0.1156–0.8949)], and there was no significant correlation of the heterozygous C/T genotype in smokers. Conclusion We found that the rs74794265 heterozygous C/T genotype significantly reduces the risk of COPD. The C/T genotype is likely a protective factor for COPD in the Kashi region. We speculate that the occurrence of COPD in this area is probably more related to desert climate condition and genetic factors than smoking status.
Collapse
Affiliation(s)
- Zulipikaer Abudureheman
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - XueMei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - JingRan Xu
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Hui Gong
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Subinuer Yilamujiang
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - ChengXin Xie
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - AiFang Zheng
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Dilala Tuerxun
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Ayiguzali Abudukadeer
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - Paierda Aini
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - AiMin Xu
- Department of Clinical Laboratory, First People's Hospital of Kashi, Kashi, People's Republic of China
| | - XiaoGuang Zou
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, People's Republic of China
| |
Collapse
|
5
|
Lu H, Xu D, Yang Y, Feng Q, Sun J, Li Q, Zhao J, Zhou X, Niu H, Liu J, He P, Ding Y. Genetic Polymorphisms of CYP2C9/ CYP2C19 in Chronic Obstructive Pulmonary Disease. COPD 2020; 17:595-600. [PMID: 32757668 DOI: 10.1080/15412555.2020.1780577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a high incidence in the elderly and significantly affects the quality of life. CYP2C9 and CYP2C19 play an important role in tobacco-related diseases and inflammatory reactions. Thus, we aim to investigate the association between CYP2C9/CYP2C19 polymorphisms and the risk of COPD. In this study, a total of 821 subjects were recruited which include 313 COPD cases and 508 healthy controls. Seven SNPs of CYP2C9/CYP2C19 were selected for genotyping. The odds ratios (ORs) and 95% confidence interval (95% CI) were calculated using logistic regression analysis to evaluate the association between COPD risk and CYP2C9/CYP2C19 polymorphisms. Our study showed that A allele of rs9332220 in CYP2C9 was associated with reducing COPD risk (OR = 0.64, 95% CI = 0.43-0.94, p = 0.021). And rs111853758 G allele carrier could significantly decrease 0.35-fold COPD risk compared with T allele carrier (OR = 0.65, 95% CI = 0.45-0.96, p = 0.027). Furthermore, sex-based stratification analysis showed that rs9332220 and rs111853758 polymorphisms were associated with the risk of COPD in males. This is the first study to investigate the association between CYP2C9 and CYP2C19 genetic polymorphisms and COPD risk, which may give a new perspective on the prevention and diagnosis of COPD.
Collapse
Affiliation(s)
- Hui Lu
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Dongchuan Xu
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yixiu Yang
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qiong Feng
- Hainan Affiliated Hospital of Hainan Medical University, University of South China, Haikou, Hainan, China
| | - Juan Sun
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Quanni Li
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Zhao
- Hainan Affiliated Hospital of Hainan Medical University, University of South China, Haikou, Hainan, China
| | - Xiaoli Zhou
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Huan Niu
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianfang Liu
- Hainan Affiliated Hospital of Hainan Medical University, University of South China, Haikou, Hainan, China
| | - Ping He
- Department of Emergency, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
6
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
7
|
Jing H, Liu L, Zhou J, Yao H. Inhibition of C-X-C Motif Chemokine 10 (CXCL10) Protects Mice from Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Med Sci Monit 2018; 24:5748-5753. [PMID: 30118441 PMCID: PMC6109363 DOI: 10.12659/msm.909864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a type of obstructive lung disease characterized by long-term breathing problems and poor airflow. COPD can progress to persistent decline of pulmonary function. This study explored the effect of CXCL10 on COPD induced by cigarette smoke (CS) and its underlying mechanism. Material/Methods Wild-type (WT) mice were randomly assigned into 3 groups: the control group, the CS group, and the intervention group. Mice in the CS group were exposed to CS and mice in the CXCL10 group were exposed to CS and CXCL10 neutralizing antibody. At 24 h after the last CS exposure, body weight and lung functions of each mouse were recorded. Mice were then anesthetized for collecting bronchoalveolar lavage fluid (BALF) and lung tissues. Levels of interleukin-6 (IL-6), keratinocyte chemotactic factor (KC), and monocyte chemoattractant protein-1 (MCP-1) in supernatant and lung homogenate were detected by ELISA and real-time PCR (RT-PCR), respectively. For in vitro experiments, human bronchial epithelial cells 16HBE were stimulated with different concentrations of cigarette smoke extract (CSE) and CXCL10. Cell viability and levels of inflammatory cytokines in the cell supernatant were detected by Cell Counting Kit-8 (CCK-8) and ELISA assay, respectively. Results Our data showed significant weight loss and reduction of lung functions in mice in the CS group compared with those in the control group and intervention group. Increased levels of IL-6, KC, and MCP-1 in BALF and lung homogenate were observed in mice in the model group compared to those in the control group and intervention group. In vitro experiments also confirmed that CXCL10-neutralizing antibody can inhibit CSE-induced cell necrosis and activation of inflammatory cytokines. Conclusions Inhibited CXCL10 protects against COPD progression by decreasing secretion of inflammatory factors, which provides a new direction for the clinical prevention and treatment of COPD.
Collapse
Affiliation(s)
- Hongyu Jing
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Lingyun Liu
- Department of Andrology, First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Junfeng Zhou
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Hanxin Yao
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|