1
|
González-Cano R, González-Martínez A, Ramón M, González Serrano M, Moreno Millán M, Rubio de Juan A, Rodero Serrano E. Exploring the Effects of Robertsonian Translocation 1/29 (Rob (1;29)) on Genetic Diversity in Minor Breeds of Spanish Berrenda Cattle via Genome-Wide Analysis. Animals (Basel) 2024; 14:793. [PMID: 38473178 DOI: 10.3390/ani14050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Most of the previous studies on the genetic variability in Spanish "Berrenda" breeds have been carried out using DNA microsatellites. The present work aimed to estimate the genetic diversity, population structure, and potential genetic differences among individuals of both Berrenda breeds and groups based on the presence of the Robertsonian chromosomal translocation, rob (1;29). A total of 373 samples from animals belonging to the two breeds, including 169 cases diagnosed as rob (1;29)-positive, were genotyped using an SNP50K chip. The genetic diversity at the breed level did not show significant differences, but it was significantly lower in those subpopulations containing the rob (1;29). Runs of homozygosity identified a region of homozygosity on chromosome 6, where the KIT (KIT proto-oncogene, receptor tyrosine kinase) gene, which determines the typical spotted coat pattern in both breeds, is located. The four subpopulations considered showed minor genetic differences. The regions of the genome that most determined the differences between the breeds were observed on chromosomes 4, 6, 18, and 22. The presence of this Robertsonian translocation did not result in sub-structuring within each of the breeds considered. To improve the reproductive performance of Berrenda breeds, it would be necessary to implement strategies considering the involvement of potential breeding stock carrying rob (1;29).
Collapse
Affiliation(s)
- Rafael González-Cano
- Ministry of Agriculture, Fisheries and Food, Paseo Infanta Isabel 1, 28014 Madrid, Spain
- Regional Center of Animal Breeding and Reproduction (CERSYRA-IRIAF), Avenida del Vino 10, 13300 Ciudad Real, Spain
| | - Ana González-Martínez
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Manuel Ramón
- Department of Animal Breeding and Genetics, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Miriam González Serrano
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Miguel Moreno Millán
- Department of Genetic, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Alejandro Rubio de Juan
- Regional Center of Animal Breeding and Reproduction (CERSYRA-IRIAF), Avenida del Vino 10, 13300 Ciudad Real, Spain
| | - Evangelina Rodero Serrano
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
3
|
Giantsis IA, Antonopoulou D, Dekolis N, Zaralis K, Avdi M. Origin, demographics, inbreeding, phylogenetics, and phenogenetics of Karamaniko breed, a major common ancestor of the autochthonous Greek sheep. Trop Anim Health Prod 2022; 54:73. [PMID: 35072809 DOI: 10.1007/s11250-022-03081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
Greece has a long history in autochthonous sheep, the genetic ancestry of which has been associated with four subtypes known to inhabit Greece at the end of the nineteenth century. Among them, the Karamaniko breed is still surviving, however endangered. This study was designed in order to (a) determine the phylogenetic status, (b) to evaluate the levels of inbreeding, and (c) to assess the genetic basis of coat color of Karamaniko breed. For these purposes, the mitochondrial cyt b gene was sequenced, the AFLP methodology was applied, and the MC1R was genotyped, respectively, in 72 female sheep from the Karamaniko breed. Four different novel cyt b haplotypes were defined and three MC1R genotypes were scored, whereas inbreeding levels estimated using AFLPs by the means of relatedness coefficient (r) were 0.287, with gene diversity at the levels of 0.105. Phylogenetic analysis indicated an eastern Asian tropical and subtropical origin of the Karamaniko breed, close with breeds originating from central Turkey, or a clustering within western European or Mediterranean sheep, mirroring a recent genetic divergence, with a non-random spread towards the formation of lowland breeds. The MC1R genotypes were all associated with the white coat color, in which selective breeding has probably been based on traditional morphological characters. Finally, levels of inbreeding do not constitute an indication for a particular mating plan to prevent unpleasant phenomena such as inbreeding depression, probably because of the special attention paid by the farmers towards the avoidance of relative recurrent mating.
Collapse
Affiliation(s)
- Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece.
| | - Danai Antonopoulou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece.,Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Dekolis
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zaralis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Melpomeni Avdi
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021; 12:700489. [PMID: 34349787 PMCID: PMC8326974 DOI: 10.3389/fgene.2021.700489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO:0005524, GO:0030552, GO:0016740, GO:0004842), lipid transfer activity (GO:0005319) and innate immunity (GO:0002376, GO:0075528, GO:0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO:0071294, GO:0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.
Collapse
Affiliation(s)
- Sofia Michailidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College, Easter Bush, Edinburgh, United Kingdom
| | - George Arsenos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| |
Collapse
|
5
|
Deribe B, Beyene D, Dagne K, Getachew T, Gizaw S, Abebe A. Morphological diversity of northeastern fat-tailed and northwestern thin-tailed indigenous sheep breeds of Ethiopia. Heliyon 2021; 7:e07472. [PMID: 34345722 PMCID: PMC8319477 DOI: 10.1016/j.heliyon.2021.e07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/10/2020] [Accepted: 06/30/2021] [Indexed: 12/05/2022] Open
Abstract
Characterization of indigenous sheep breeds using morphological traits is essential for designing rational conservation and improvement strategies. This study was conducted to check the morphological diversity of three fat-tailed and three thin-tailed indigenous sheep breeds of Ethiopia. The phenotypic traits such as live body weight and linear body measurements (body length, wither height, chest girth, chest depth, rump height, rump length, ear length, tail length, and pelvic width) were measured and used for analysis. The statistical analysis was done using different procedures of SAS 9.4. Analysis of variance showed significant variation between breeds. Multivariate analyses clearly assigned the studied sheep breeds into distinct populations. Mahalanobis distance showed significant (p < 0.01) difference between breeds. The present morphometric information obtained could support future decision-making on the management, conservation, and improvement of the studied sheep genetic resources.
Collapse
Affiliation(s)
- Belay Deribe
- Sirinka Agriculture Research Center, P.O. Box 074, Woldia, Ethiopia
| | - Dereje Beyene
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Kifle Dagne
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Tesfaye Getachew
- International Center for Agricultural Research in Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Solomon Gizaw
- International Livestock Research Institute, HEARD Project Coordinator, Addis Ababa, Ethiopia
| | - Ayele Abebe
- Debre Birhan Agriculture Research Center, Debre Birhan, Ethiopia
| |
Collapse
|
6
|
Kominakis A, Tarsani E, Hager-Theodorides AL, Mastranestasis I, Hadjigeorgiou I. Clustering patterns mirror the geographical distribution and genetic history of Lemnos and Lesvos sheep populations. PLoS One 2021; 16:e0247787. [PMID: 33657161 PMCID: PMC7928510 DOI: 10.1371/journal.pone.0247787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genetic variation and structure of Lemnos and Lesvos sheep is critical for maintaining local genetic diversity, ecosystem integrity and resilience of local food production of the two North Aegean islands. In the present study, we explored genetic diversity and differentiation as well as population structure of the Lemnos and Lesvos sheep. Furthermore, we sought to identify a small panel of markers with the highest discriminatory power to assign animals across islands. A total number of n = 424 (n = 307, Lemnos and n = 117, Lesvos) ewes, sampled from n = 24 herds dispersed at different geographic regions on the two islands, were genotyped with the 50K SNP array. Mean observed heterozygosity was higher (but not statistically significantly different) in Lesvos than in Lemnos population (0.384 vs. 0.377) while inbreeding levels were higher in Lemnos than Lesvos herds (0.065 vs. 0.031). Results of principal components along with that of admixture analysis and estimated genetic distances revealed genetic clusters corresponding to Lesvos and Lemnos origin and the existence of infrastructure within islands that were associated with geographical isolation and genetic history of the studied populations. In particular, genetic analyses highlighted three geographically isolated herds in Lemnos that are located at mountainous areas of the island and are characterized as representatives of the local sheep by historic data and reports. Admixture analysis also showed a shared genetic background between Lemnos and Lesvos sheep attributable to past gene flow. Little overall genetic differentiation was detected between the two island sheep populations, while 150 discriminatory SNPs could accurately assign animals to their origin. Present results are comparable with those reported in the worldwide sheep breeds, suggesting geography related genetic patterns across and within islands and the existence of the local Lemnos sheep.
Collapse
Affiliation(s)
- Antonios Kominakis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Eirini Tarsani
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
- * E-mail:
| | | | | | | |
Collapse
|
7
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E, on behalf of the FoodOmicsGR_RI Consortium. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
8
|
|
9
|
Ciani E, Mastrangelo S, Da Silva A, Marroni F, Ferenčaković M, Ajmone-Marsan P, Baird H, Barbato M, Colli L, Delvento C, Dovenski T, Gorjanc G, Hall SJG, Hoda A, Li MH, Marković B, McEwan J, Moradi MH, Ruiz-Larrañaga O, Ružić-Muslić D, Šalamon D, Simčič M, Stepanek O, Curik I, Cubric-Curik V, Lenstra JA. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet Sel Evol 2020; 52:25. [PMID: 32408891 PMCID: PMC7227234 DOI: 10.1186/s12711-020-00545-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/30/2020] [Indexed: 11/26/2022] Open
Abstract
Background In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. Results We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{4}$$\end{document}f4 profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. Conclusions Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.
Collapse
Affiliation(s)
- Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, Universita. degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Universita Studi di Palermo, Palermo, Italy
| | - Anne Da Silva
- Université de Limoges, INRAE, Pereine EA7500, USC1061 Gamaa, 87000, Limoges, France
| | - Fabio Marroni
- Dipartamento Scienze Agroalimentari, Ambientali e Animali, Universita Udine, Udine, Italy
| | | | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Hayley Baird
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Mario Barbato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Chiara Delvento
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, Universita. degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Toni Dovenski
- Department of Reproduction and Biomedicine, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Gregor Gorjanc
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, UK
| | | | - Anila Hoda
- Department of Animal Production, Faculty of Agriculture and Environment, Agricultural University ofTirana, Tirana, Albania
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - John McEwan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Mohammad H Moradi
- Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Otsanda Ruiz-Larrañaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of Basque Country, Leioa, Spain
| | | | - Dragica Šalamon
- Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | - Mojca Simčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | - Ino Curik
- Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | | | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Meyermans R, Gorssen W, Buys N, Janssens S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 2020; 21:94. [PMID: 31996125 PMCID: PMC6990544 DOI: 10.1186/s12864-020-6463-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/01/2022] Open
Abstract
Background PLINK is probably the most used program for analyzing SNP genotypes and runs of homozygosity (ROH), both in human and in animal populations. The last decade, ROH analyses have become the state-of-the-art method for inbreeding assessment. In PLINK, the --homozyg function is used to perform ROH analyses and relies on several input settings. These settings can have a large impact on the outcome and default values are not always appropriate for medium density SNP array data. Guidelines for a robust and uniform ROH analysis in PLINK using medium density data are lacking, albeit these guidelines are vital for comparing different ROH studies. In this study, 8 populations of different livestock and pet species are used to demonstrate the importance of PLINK input settings. Moreover, the effects of pruning SNPs for low minor allele frequencies and linkage disequilibrium on ROH detection are shown. Results We introduce the genome coverage parameter to appropriately estimate FROH and to check the validity of ROH analyses. The effect of pruning for linkage disequilibrium and low minor allele frequencies on ROH analyses is highly population dependent and such pruning may result in missed ROH. PLINK’s minimal density requirement is crucial for medium density genotypes and if set too low, genome coverage of the ROH analysis is limited. Finally, we provide recommendations for the maximal gap, scanning window length and threshold settings. Conclusions In this study, we present guidelines for an adequate and robust ROH analysis in PLINK on medium density SNP data. Furthermore, we advise to report parameter settings in publications, and to validate them prior to analysis. Moreover, we encourage authors to report genome coverage to reflect the ROH analysis’ validity. Implementing these guidelines will substantially improve the overall quality and uniformity of ROH analyses.
Collapse
Affiliation(s)
- R Meyermans
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - W Gorssen
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - N Buys
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - S Janssens
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium.
| |
Collapse
|
11
|
Davenport KM, Hiemke C, McKay SD, Thorne JW, Lewis RM, Taylor T, Murdoch BM. Genetic structure and admixture in sheep from terminal breeds in the United States. Anim Genet 2020; 51:284-291. [PMID: 31970815 PMCID: PMC7065203 DOI: 10.1111/age.12905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Selection for performance in diverse production settings has resulted in variation across sheep breeds worldwide. Although sheep are an important species to the United States, the current genetic relationship among many terminal sire breeds is not well characterized. Suffolk, Hampshire, Shropshire and Oxford (terminal) and Rambouillet (dual purpose) sheep (n = 248) sampled from different flocks were genotyped using the Applied Biosystems Axiom Ovine Genotyping Array (50K), and additional Shropshire sheep (n = 26) using the Illumina Ovine SNP50 BeadChip. Relationships were investigated by calculating observed heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates and an identity by state matrix. The mean observed heterozygosity for each breed ranged from 0.30 to 0.35 and was consistent with data reported in other US and Australian sheep. Suffolk from two different regions of the United States (Midwest and West) clustered separately in eigenvalue plots and the rectangular cladogram. Further, divergence was detected between Suffolk from different regions with Wright’s FST estimate. Shropshire animals showed the greatest divergence from other terminal breeds in this study. Admixture between breeds was examined using admixture, and based on cross‐validation estimates, the best fit number of populations (clusters) was K = 6. The greatest admixture was observed within Hampshire, Suffolk, and Shropshire breeds. When plotting eigenvalues, US terminal breeds clustered separately in comparison with sheep from other locations of the world. Understanding the genetic relationships between terminal sire breeds in sheep will inform us about the potential applicability of markers derived in one breed to other breeds based on relatedness.
Collapse
Affiliation(s)
- K M Davenport
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, 83844, USA
| | - C Hiemke
- Niman Ranch and Mapleton Mynd Shropshires, Stoughton, MA, 53589, USA
| | - S D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - J W Thorne
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, 83844, USA.,Texas A&M AgriLife Extension, San Angelo, TX, 76901, USA
| | - R M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - T Taylor
- Department of Animal Science, Arlington Research Station, University of Wisconsin-Madison, Arlington, WI, 53911, USA
| | - B M Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
12
|
Alvarenga AB, Rovadoscki GA, Petrini J, Coutinho LL, Morota G, Spangler ML, Pinto LFB, Carvalho GGP, Mourão GB. Linkage disequilibrium in Brazilian Santa Inês breed, Ovis aries. Sci Rep 2018; 8:8851. [PMID: 29892085 PMCID: PMC5995818 DOI: 10.1038/s41598-018-27259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
For genomic selection to be successful, there must be sufficient linkage disequilibrium between the markers and the causal mutations. The objectives of this study were to evaluate the extent of LD in ovine using the Santa Inês breed and to infer the minimum number of markers required to reach reasonable prediction accuracy. In total, 38,168 SNPs and 395 samples were used. The mean LD between adjacent marker pairs measured by r2 and |D′| were 0.166 and 0.617, respectively. LD values between adjacent marker pairs ranged from 0.135 to 0.194 and from 0.568 to 0.650 for r2 for |D′| across all chromosomes. The average r2 between all pairwise SNPs on each chromosome was 0.018. SNPs separated by between 0.10 to 0.20 Mb had an estimated average r2 equal to 0.1033. The identified haplotype blocks consisted of 2 to 21 markers. Moreover, estimates of average coefficients of inbreeding and effective population size were 0.04 and 96, respectively. LD estimated in this study was lower than that reported in other species and was characterized by short haplotype blocks. Our results suggest that the use of a higher density SNP panel is recommended for the implementation of genomic selection in the Santa Inês breed.
Collapse
Affiliation(s)
- Amanda Botelho Alvarenga
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gregori Alberto Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil.
| |
Collapse
|