1
|
Pasupula K, Verma P, Zimik M, Kaur C, Vasudev S, Khar A. Morphological, biochemical and molecular characterization of short-day tropical Indian garlic ( Allium sativum L.). Heliyon 2024; 10:e37553. [PMID: 39309863 PMCID: PMC11414556 DOI: 10.1016/j.heliyon.2024.e37553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Garlic, an asexually propagated bulbous crop, displays a wide diversity based on its morphological traits and biochemical compositions. This study investigated the genetic variability of Indian garlic through morphological, biochemical, and molecular markers. Twenty-nine genotypes along with three Allium species as outgroup were included in the present study. Observations were recorded on 14 quantitative traits, 17 qualitative traits, and 9 biochemical traits in fresh garlic. Significant variability was observed among genotypes for different characters. All the morphological and biochemical traits showed higher phenotypic coefficient of variation (PCV) than genotypic coefficient of variation (GCV) revealing the role of environment in trait expression. High to moderate heritability and genetic advance as percent mean were recorded for different traits except dry matter and Total Soluble Solids (TSS). Correlation analysis revealed the highest positive correlation between total yield, marketable yield, Ferric Reducing Antioxidant Potential (FRAP) and 2,2-diphenyl-1-picrylhyrazyl (DPPH). Cluster analysis differentiated all the genotypes into three major clusters based on morphological and biochemical traits. 214 Simple Sequence Repeats (SSRs) were screened and nine markers exhibited polymorphism. Cluster analysis using molecular markers revealed 4 distinct clusters. The observations from this study will help in the identification of diverse garlic germplasm for its efficient management and duplicate identification of germplasm resources.
Collapse
Affiliation(s)
- Karishma Pasupula
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Priyanka Verma
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Masochon Zimik
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Charanjit Kaur
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sujata Vasudev
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Liu H, Cheng H, Xu J, Hu J, Zhao C, Xing L, Wang M, Wu Z, Peng D, Yu N, Liu J. Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers. PLoS One 2023; 18:e0290605. [PMID: 37651363 PMCID: PMC10470896 DOI: 10.1371/journal.pone.0290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Polygonatum cyrtonema Hua is a perennial herbaceous plant of the Polygonatum genus, belonging to the Liliaceae family, with significant medicinal and nutritional value. In China, this species is a traditional medicinal and edible herb with a long history of application and is widely appreciated by the people. However, as the demand for medicinal herbs continues to grow, excessive harvesting has led to the depletion of wild resources and the risk of genetic erosion. In addition, the chaotic cultivation of varieties and the lack of high quality germplasm resources have led to inconsistent quality of medical materials. Therefore, it is urgent to conduct genetic diversity evaluation of this species and establish a sound conservation plan. This study assessed the genetic diversity and population structure of 96 samples collected from seven regions in China using the simple sequence repeat (SSR) molecular marker technology. In this study, a total of 60 alleles (Na) were detected across the 10 polymorphic SSR markers used, with an average of 6.0 alleles generated per locus. The values of polymorphic information content (PIC) values ranged from 0.3396 to 0.8794, with an average value of 0.6430. The average value of the effective number of alleles (Ne) was 2.761, and the average value of the Shannon's information index (I) was 1.196. The population structure analysis indicates that the Polygonatum cyrtonema Hua germplasm can be classified into three subpopulations (JZ, QY, JD) at the molecular level, which corresponds to the previous subgroups identified based on individual plant phenotypic traits. Analysis of Molecular Variance (AMOVA) showed that 74% of the genetic variation was between individuals within populations in different regions. The phylogenetic analysis of the 96 germplasm samples divided them into three main populations. The QY and JD subpopulations are largely clustered together, which could be attributed to their mountainous distribution and the local climate environment. The genetic differentiation coefficient (Fst) value was low at 0.065, indicating relatively low population differentiation. The ratio of the genetic differentiation coefficient (Fst) between the JZ population and the other two populations (QY and JD) is much higher than the ratio between the QY and JD populations. Based on the clustering results and the ratio of the genetic differentiation coefficient (Fst), it can be inferred that the genetic relationship between the QY and JD subpopulations is closer, with a certain degree of genetic differentiation from the JZ subpopulation. This study supports the conservation of germplasm resources of Polygonatum cyrtonema Hua in China and provides new parental material for germplasm genetic improvement and breeding programs.
Collapse
Affiliation(s)
- Heng Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - He Cheng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jun Xu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Chenchen Zhao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Zhendong Wu
- Anhui Qingyang County Jiuhua traditional Chinese Medicinal Materials Technology Co., Ltd, Chizhou City, Anhui Province, China
| | - Daiyin Peng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Junling Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Anhui Provincial Institutes for Food and Drug Control, Hefei, Anhui Province, China
| |
Collapse
|
3
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
4
|
Parreño R, Rodríguez-Alcocer E, Martínez-Guardiola C, Carrasco L, Castillo P, Arbona V, Jover-Gil S, Candela H. Turning Garlic into a Modern Crop: State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1212. [PMID: 36986902 PMCID: PMC10057115 DOI: 10.3390/plants12061212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens.
Collapse
Affiliation(s)
- Ricardo Parreño
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Eva Rodríguez-Alcocer
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | - Lucía Carrasco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Purificación Castillo
- Departamento I+D, Coopaman S.C.L., Carretera Peñas De San Pedro, km 1.6, 02006 Albacete, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
5
|
Lim DW, Yu GR, Kim JE, Park WH. Network pharmacology predicts combinational effect of novel herbal pair consist of Ephedrae herba and Coicis semen on adipogenesis in 3T3-L1 cells. PLoS One 2023; 18:e0282875. [PMID: 36928463 PMCID: PMC10019655 DOI: 10.1371/journal.pone.0282875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Herbal combinations are regarded as basic strategy in oriental medicine with various purposes. Ephedrae herba (EH) and Coicis semen (CS) are two herbal medicines used to treat obesity in many herbal prescriptions, yet the effect and significance of this herbal pair have not been evaluated. PURPOSE This study is to elucidate the effect of a novel herbal pair, EH-CS, on obesity and identify the key synergistic mechanism underlying it. METHODS We investigated the network of herbs comprising the anti-obesity herbal prescriptions. Using the tools of network pharmacology, we investigated the compound-target interactions of EH and CS in combination to predict their effects in combination. Five EH-CS samples with different EH to CS ratios were prepared to investigate their efficacies in adipocytes. RESULTS 1-mode network analysis of herbs in prescriptions based on literature review revealed the importance of EH-CS in anti-obesity prescriptions. The herbal combination comprised of equivalent weights (1:1) of EH and CS most potently reduced mature adipocyte adiposity, although several markers of adipogenesis and lipid synthesis were more suppressed by pure EH. PTGS2 (COX-2 gene) expression, a common target of EH and CS as deduced by compound-target network analysis, was affected by EH-CS extract treatments. However, EH at high concentration (25 μg/ml) notably increased PTGS2 expression without adversely affecting cell viability. However, EH-CS combination of the same concentration markedly decreased PTGS2 gene expression. CONCLUSION These results show that the compounds in CS and EH act in concert to enhance the pharmacological effect of EH, but control unexpected effects of EH treatment.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- Institute of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Ga-Ram Yu
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail: (W-HP); (J-EK)
| | - Won-Hwan Park
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail: (W-HP); (J-EK)
| |
Collapse
|
6
|
Zhang C, Jia C, Liu X, Zhao H, Hou L, Li M, Cui B, Li Y. Genetic Diversity Study on Geographical Populations of the Multipurpose Species Elsholtzia stauntonii Using Transferable Microsatellite Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:903674. [PMID: 35646027 PMCID: PMC9134938 DOI: 10.3389/fpls.2022.903674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Elsholtzia stauntonii Benth. (Lamiaceae) is an economically important ornamental, medicinal and aromatic plant species. To meet the increasing market demand for E. stauntonii, it is necessary to assess genetic diversity within the species to accelerate the process of genetic improvement. Analysis of the transferability of simple sequence repeat (SSR) markers from related species or genera is a fast and economical method to evaluate diversity, and can ensure the availability of molecular markers in crops with limited genomic resources. In this study, the cross-genera transferability of 497 SSR markers selected from other members of the Lamiaceae (Salvia L., Perilla L., Mentha L., Hyptis Jacq., Leonurus L., Pogostemon Desf., Rosmarinus L., and Scutella L.) to E. stauntonii was 9.05% (45 primers). Among the 45 transferable markers, 10 markers revealed relatively high polymorphism in E. stauntonii. The genetic variation among 825 individuals from 18 natural populations of E. stauntonii in Hebei Province of China was analyzed using the 10 polymorphic SSR markers. On the basis of the SSR data, the average number of alleles (N A), expected heterozygosity (H E), and Shannon's information index (I) of the 10 primers pairs were 7.000, 0.478, and 0.688, respectively. Lower gene flow (N m = 1.252) and high genetic differentiation (F st = 0.181) were detected in the populations. Analysis of molecular variance (AMOVA) revealed that most of the variation (81.47%) was within the populations. Integrating the results of STRUCTURE, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering, and principal coordinate analysis, the 825 samples were grouped into two clusters associated with geographical provenance (southwestern and northeastern regions), which was consistent with the results of a Mantel test (r = 0.56, p < 0.001). Overall, SSR markers developed in related genera were effective to study the genetic structure and genetic diversity in geographical populations of E. stauntonii. The results provide a theoretical basis for conservation of genetic resources, genetic improvement, and construction of a core collection for E. stauntonii.
Collapse
Affiliation(s)
- Chenxing Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunfeng Jia
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Xinru Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Meng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Binbin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Yingyue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Feng B, Wang X, Chen S, Zhang Y, Su X, Song S. Transcriptome analysis and genetic diversity of Allium victorialis germplasms from the Changbai Mountains. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2915-2923. [PMID: 34553046 PMCID: PMC8451692 DOI: 10.1080/23802359.2021.1972857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Changbai Mountains comprise one of the main distribution areas of A. victorialis in China, and this species is endangered owing to habitat changes and overexploitation. However, A. victorialis germplasms have not been systematically collected and studied. The aims of this study were to obtain some detailed genetic information, analyze the genetic diversity, and further promote the protection of A. victorialis germplasms from the Changbai Mountains. Transcriptomic analysis was performed with six A. victorialis samples collected from the Changbai Mountains. At least 146,759 genes for each sample were obtained after performing de novo assembly of the RNA-seq data, and at least 92% of these genes were found to have only one mRNA isoform. These sequences and their functional annotations provided a large-scale genetic resource of this species. Phylogenetic analysis showed that A. victorialis was genetically distant from some related species, e.g. Allium sativum, Allium fistulosum, and Allium cepa, but genetically close to Allium tuberosum. The two A. victorialis var. listera samples were phylogenetically separated from the other four samples, and these two samples should be regarded as Allium listera. In addition, two KASP markers for discriminating the Dongfeng samples from the other four A. victorialis samples were successfully developed. This study lays the foundation for future studies on the genetic diversity and evolution of Allium species, as well as for the conservation of A. victorialis germplasms from the Changbai Mountains and other populations of this species.
Collapse
Affiliation(s)
- Bo Feng
- Jilin Agricultural University, Changchun, Jilin, China.,Jilin Provincial Academy of Forestry Sciences, Changchun, Jilin, China
| | - Xiufeng Wang
- Jilin Academy of Vegetable and Flower Sciences, Changchun, Jilin, China
| | - Shanshan Chen
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Zhang
- Jilin Academy of Vegetable and Flower Sciences, Changchun, Jilin, China
| | - Xuejiao Su
- Jilin Agricultural University, Changchun, Jilin, China
| | - Shuyao Song
- Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
8
|
Khapilina O, Raiser O, Danilova A, Shevtsov V, Turzhanova A, Kalendar R. DNA profiling and assessment of genetic diversity of relict species Allium altaicum Pall. on the territory of Altai. PeerJ 2021; 9:e10674. [PMID: 33510974 PMCID: PMC7798630 DOI: 10.7717/peerj.10674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Analysis of the genetic diversity of natural populations of threatened and endangered species of plants is a main aspect of conservation strategy. The endangered species Allium altaicum is a relict plant of the Ice Age and natural populations are located in extreme climatic conditions of Kazakstan's Altai Mountains. Mobile genetic elements and other interspersed repeats are basic components of a eukaryote genome, which can activate under stress conditions and indirectly promote the survival of an organism against environmental stresses. Detections of chromosomal changes related to recombination processes of mobile genetic elements are performed by various PCR methods. These methods are based on interspersed repeat sequences and are an effective tool for research of biological diversity of plants and their variability. In our research, we used conservative sequences of tRNA primer binding sites (PBS) when initializing the retrotransposon replication as PCR primers to research the genetic diversity of 12 natural populations of A. altaicum found in various ecogeographic conditions of the Kazakhstani Altai. High efficiency of the PBS amplification method used was observed already at the intrapopulation level. Unique amplicons representative of a certain population were found at the intrapopulation level. Analysis of molecular dispersion revealed that the biodiversity of populations of mountainous and lowland A. altaicum is due to intrapopulation differences for climatic zones of habitation. This is likely conditional upon predominance of vegetative reproduction over seed reproduction in some populations. In the case of vegetative reproduction, somatic recombination related to the activity of mobile genetic elements are preserved in subsequent generations. This leads to an increase of intrapopulation genetic diversity. Thus, high genetic diversity was observed in populations such as A. altaicum located in the territory of the Kalbinskii Altai, whereas the minimum diversity was observed in the populations of the Leninororsk ecogeographic group. Distinctions between these populations were also identified depending on the areas of their distribution. Low-land and mid-mountain living environments are characterized by a great variety of shapes and plasticity. This work allowed us to obtain new genetic data on the structure of A. altaicum populations on the territory of the Kazakhstan Altai for the subsequent development of preservation and reproduction strategies for this relict species.
Collapse
Affiliation(s)
| | - Olesya Raiser
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | | | | | | | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Aqmola, Kazakhstan
| |
Collapse
|
9
|
Jiang Y, Xu S, Wang R, Zhou J, Dou J, Yin Q, Wang R. Characterization, validation, and cross-species transferability of EST-SSR markers developed from Lycoris aurea and their application in genetic evaluation of Lycoris species. BMC PLANT BIOLOGY 2020; 20:522. [PMID: 33198627 PMCID: PMC7670666 DOI: 10.1186/s12870-020-02727-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/31/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND The Lycoris genus includes many ornamentally and medicinally important species. Polyploidization and hybridization are considered modes of speciation in this genus, implying great genetic diversity. However, the lack of effective molecular markers has limited the genetic analysis of this genus. RESULTS In this study, mining of EST-SSR markers was performed using transcriptome sequences of L. aurea, and 839 primer pairs for non-redundant EST-SSRs were successfully designed. A subset of 60 pairs was randomly selected for validation, of which 44 pairs could amplify products of the expected size. Cross-species transferability of the 60 primer pairs among Lycoris species were assessed in L. radiata Hreb, L. sprengeri Comes ex Baker, L. chinensis Traub and L. anhuiensis, of which between 38 to 77% of the primers were able to amplify products in these Lycoris species. Furthermore, 20 and 10 amplification products were selected for sequencing verification in L. aurea and L. radiata respectively. All products were validated as expected SSRs. In addition, 15 SSRs, including 10 sequence-verified and 5 unverified SSRs were selected and used to evaluate the genetic diversity of seven L. radiata lines. Among these, there were three sterile lines, three fertile lines and one line represented by the offspring of one fertile line. Unweighted pair group method with arithmetic mean analysis (UPGMA) demonstrated that the outgroup, L. aurea was separated from L. radiata lines and that the seven L. radiata lines were clustered into two groups, consistent with their fertility. Interestingly, even a dendrogram with 34 individuals representing the seven L. radiata lines was almost consistent with fertility. CONCLUSIONS This study supplies a pool of potential 839 non-redundant SSR markers for genetic analysis of Lycoris genus, that present high amplification rate, transferability and efficiency, which will facilitate genetic analysis and breeding program in Lycoris.
Collapse
Affiliation(s)
- Yumei Jiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| | - Sheng Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| | - Rong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| | - Jian Dou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
| | - Qian Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| |
Collapse
|
10
|
Kumar M, Rakesh Sharma V, Kumar V, Sirohi U, Chaudhary V, Sharma S, Saripalli G, Naresh RK, Yadav HK, Sharma S. Genetic diversity and population structure analysis of Indian garlic ( Allium sativum L.) collection using SSR markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:377-386. [PMID: 30956421 PMCID: PMC6419858 DOI: 10.1007/s12298-018-0628-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 05/03/2023]
Abstract
Genetic diversity was assessed among 53 Indian garlic accessions using SSR markers. Initially, 24 SSR primer pairs were used for screening three selected garlic accessions. Out of 24 SSR primer pairs, 10 primer pairs which consistently showed good amplification and polymorphism were selected for DNA profiling. SSR primer pairs showed PIC values ranging from 0.30 to 0.99. Based on AMOVA we found that the greater part of the genetic diversity was expected due to intra population with 84% variation and only 16% of variation was due to among populations suggesting presence of genetic structure. The results of cluster analysis and principal component analysis largely correspond to each other. Population structure analysis revealed genetic differentiation of accessions. The results of present study revealed existence of significant variability in Indian garlic germplasm.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110 UP India
| | - V. Rakesh Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 UP India
| | - Vipin Kumar
- Department of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110 UP India
| | - Ujjawal Sirohi
- Department of Agri. Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110 UP India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, 250003 UP India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 UP India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 UP India
| | - R. K. Naresh
- Department of Agronomy, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110 UP India
| | - Hemant Kumar Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 UP India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 UP India
| |
Collapse
|
11
|
De Novo Transcriptome Analysis of Dalbergia odorifera and Transferability of SSR Markers Developed from the Transcriptome. FORESTS 2019. [DOI: 10.3390/f10020098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dalbergia odorifera T. Chen (Fabaceae), indigenous to Hainan Island, is a precious rosewood (Hainan hualimu) in China. However, only limited genomic information is available which has resulted in a lack of molecular markers, limiting the development and utilization of the germplasm resources. In this study, we aim to enrich genomic information of D. odorifera, and develop a series of transferable simple sequence repeat (SSR) markers for Dalbergia species. Therefore, we performed transcriptome sequencing for D. odorifera by pooling leaf tissues from three trees. A dataset of 138,516,418 reads was identified and assembled into 115,292 unigenes. Moreover, 35,774 simple sequence repeats (SSRs) were identified as potential SSR markers. A set of 19 SSR markers was successfully transferred across species of Dalbergia odorifera T. Chen, Dalbergia tonkinensis Prain, and Dalbergia cochinchinensis Pierre ex Laness. In total, 112 alleles (3–13 alleles/locus) were presented among 60 Dalbergia trees, and polymorphic information content ranged from 0.38 to 0.75. The mean observed and mean expected heterozygosity was 0.34 and 0.40 in D. odorifera, 0.27 and 0.32 in D. tonkinensis, and 0.29 and 0.33 in D. cochinchinensis, respectively. The cluster analysis classified these 60 trees into three major groups according to the three Dalbergia species based on the genetic similarity coefficients, indicating these newly developed transferable markers can be used to explore the relationships among Dalbergia species and assist genetic research. All these unigenes and SSR markers will be useful for breeding programs in the future.
Collapse
|