1
|
Jyothy A, Hussain J, S SC, Chandraprabha VR, Nair MG, Vasudevan S, Sreedharan H, Abraham B, Maliekal TT, Natarajan K, Sengupta S. α-Fodrin-CENP-E interaction is critical for pancreatic cancer progression and drug response. Cell Cycle 2025:1-25. [PMID: 40211684 DOI: 10.1080/15384101.2025.2485837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
α-Fodrin, a known scaffolding protein for cytoskeleton stabilization, performs various functions including cell adhesion, cell motility, DNA repair and apoptosis. Based on our previous results revealing its role in mitosis in glioblastoma, we have examined its effect in pancreatic cancer, which is often linked to mitotic aberrations including aneuploidy and chromosome instability. Here, we show that the expression of α-Fodrin increases in pancreatic adenocarcinoma tissues compared to its normal counterpart, suggesting its tumor promoting role. shRNA-mediated knock-down of α-Fodrin significantly reduces the xenograft growth in immunocompromised mice underscoring the importance of α-Fodrin in tumor progression. CENP-E (centromere-associated protein E) is a motor protein essential for chromosomal alignment and segregation during mitosis. We have found that α-Fodrin interacts with CENP-E to recruit it to the kinetochore and depletion of α-Fodrin has a crucial role in controlling aneuploidy. As these mitotic defects can lead to apoptosis, we have further evaluated the activation of possible upstream pathways. Paclitaxel, a chemotherapeutic agent that stabilizes microtubules, disrupts mitosis and induces apoptosis. We found that Paclitaxel triggered stronger activation of JNK, ERK, and P38 MAPKs, altered BCL2/BAX ratios, cytochrome C release causing increased apoptosis in α-Fodrin knockdown cells compared to cells with wild-type α-Fodrin. This enhanced sensitivity to paclitaxel is consistent with improved survival in pancreatic cancer patients with low α-Fodrin (SPTAN1) and low CENP-E expression compared to poor prognosis with high expressions of both the genes. Taken together, this study provides the molecular mechanism by which α-Fodrin - CENP-E axis regulates pancreatic cancer progression and drug response.
Collapse
Affiliation(s)
- Athira Jyothy
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Julfequar Hussain
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sharanya C S
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Smreti Vasudevan
- Research Department, Rajiv Gandhi Cancer Institute and Research, Delhi, India
| | - Hariharan Sreedharan
- Laboratory of Cytogenetics and Molecular Diagnostics, Regional Cancer Centre, Thiruvananthapuram, India
| | - Betty Abraham
- Department of Pathology, DDRC SRL Diagnostics private limited, Thiruvananthapuram, India
| | - Tessy Thomas Maliekal
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Suparna Sengupta
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
2
|
Martino S, Gargano S, Carollo PS, Di Leonardo A, Barra V. DNMT1 prolonged absence is a tunable cellular stress that triggers cell proliferation arrest to protect from major DNA methylation loss. Cell Mol Life Sci 2024; 82:7. [PMID: 39694934 DOI: 10.1007/s00018-024-05547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Methylation of cytosine in CpG dinucleotides is an epigenetic modification carried out by DNA-methyltransferases (DNMTs) that contributes to chromatin condensation and structure and, thus, to gene transcription regulation and chromosome stability. DNMT1 maintains the DNA methylation pattern of the genome at each cell cycle by copying it to the newly synthesized DNA strand during the S-phase. DNMT1 pharmacological inhibition as well as genetic knockout and knockdown, leads to passive DNA methylation loss. However, these strategies have been associated with different cell fates, even in the same cell background, suggesting that they can question the interpretation of the obtained results. Using a cell system in which endogenous DNMT1 is fused with an inducible degron and can be rapidly degraded, we found that in non-tumoral RPE-1 cells, DNMT1 loss progressively induced cell proliferation slowing-down and cell cycle arrest at the G1/S transition. The latter is due to p21 activation, which is partly mediated by p53 and leads to a global reduction in DNA methylation. DNMT1 restoration rescues cell proliferation, indicating that its deregulation is sensed as tunable cellular stress.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
- Centro Di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
3
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
4
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
She ZY, Xu MF, Jiang SY, Wei YL. Kinesin-7 CENP-E is essential for chromosome alignment and spindle assembly of mouse spermatocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119306. [PMID: 35680098 DOI: 10.1016/j.bbamcr.2022.119306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China.
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Sun-Ying Jiang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
6
|
Cilluffo D, Chiavetta RF, Bivona S, Contino F, Coronnello C, Feo S, Di Leonardo A, Barra V. Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts. Genes (Basel) 2021; 12:1322. [PMID: 34573304 PMCID: PMC8466516 DOI: 10.3390/genes12091322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Institute for Innovation and Biomedical Research (IRIB), CNR, 90146 Palermo, Italy
| | - Roberta Flavia Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | - Serena Bivona
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
| | - Flavia Contino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| |
Collapse
|
7
|
Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021; 14:25. [PMID: 34082816 PMCID: PMC8173753 DOI: 10.1186/s13072-021-00400-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually methylated to maintain a heterochromatic, repressed state. Notably, there is increasing evidence showing that repetitive elements (satellites, long interspersed nuclear elements (LINEs), Alus) are frequently hypomethylated in various of human pathologies, from cancer to psychiatric disorders. Repetitive sequences’ hypomethylation correlates with chromatin relaxation and unscheduled transcription. If these alterations are directly involved in human diseases aetiology and how, is still under investigation. Conclusions Hypomethylation of different families of repetitive sequences is recurrent in many different human diseases, suggesting that the methylation status of these elements can be involved in preservation of human health. This provides a promising point of view towards the research of therapeutic strategies focused on specifically tuning DNA methylation of DNA repeats.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy.,National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, 95125, Catania, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
8
|
Cilluffo D, Barra V, Di Leonardo A. P14 ARF: The Absence that Makes the Difference. Genes (Basel) 2020; 11:genes11070824. [PMID: 32698529 PMCID: PMC7397060 DOI: 10.3390/genes11070824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/23/2023] Open
Abstract
P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector and then induced aneuploidy by treating HCT116 cells with the CENP-E inhibitor GSK923295. P14ARF ectopic re-expression restored the near-diploid phenotype of HCT116 cells, confirming that p14ARF counteracts aneuploid cell generation/proliferation.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (V.B.)
- Centro di Oncobiologia Sperimentale (C.O.B.S.) via San Lorenzo, 90146 Palermo, Italy
- Correspondence: ; Tel.: +39-09123897340
| |
Collapse
|
9
|
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci 2020; 21:ijms21134781. [PMID: 32640650 PMCID: PMC7369808 DOI: 10.3390/ijms21134781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively.
Collapse
|