1
|
Chen J, Liu S, Feng G, Gao J, Wang N, Ai N, Zhou B. Transcriptome reveals Gafmt-1 and Gadlc-1-5 play positive roles in cotton resistance to Verticillium wilt. PLANT CELL REPORTS 2025; 44:76. [PMID: 40100380 DOI: 10.1007/s00299-025-03462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
KEY MESSAGE Both Gafmt-1 and Gadlc-1-5 from Gossypium arboreum respond to Verticillium dahilae infection in Gossypium hirsutum and may play positive roles in Verticillium wilt resistance via the salicylic acid pathway. Verticillium wilt (VW) caused by Verticillium dahliae is one of the most destructive diseases affecting cotton production and quality worldwide. Numerous resistance genes against the disease from tetraploid cultivated cotton (2n = 4x = AADD = 52) have been cloned and functionally analyzed to attempt to develop resistant varieties. However, VW continues to pose a significant threat to global cotton production due to the lack of cost-effective resistance genes to balance resistance and yield. Resistance genes from diploid cotton species such as Gossypium arboreum (2n = 2x = AA = 26) remain largely untapped, and their functions are unknown. Here, a resistant G. hirsutum-G. arboreum introgression line, DM10781, was employed to mine new resistance genes against V. dahliae from the diploid cotton species. We performed time-course transcriptome analysis on the RNA-seq data at 0, 4, 12, 24, 48, and 96 h post-inoculation. Weighted gene co-expression network analysis showed that nine differentially expressed genes (DEGs) caused by disease resistance have been identified. Among them, seven genes were found on the introgression segments from G. arboreum and suffered from virus-induced gene silencing in DM10781. Out of them, two genes were further overexpressing in Arabidopsis. The results indicated the two genes of Gafmt-1 and Gadlc-1-5 played positive roles in both cotton and Arabidopsis. Our study demonstrates that G. arboreum has the resistance genes to VW and can be used in future disease-resistance breeding, providing insights into the resistance of Gafmt-1 and Gadlc-1-5 against VW in cotton.
Collapse
Affiliation(s)
- Jiale Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Susu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Guo X, Xu Y, Sun R, Cai X, Zhou Z, Qin T, Tao Y, Li B, Hou Y, Wang Q, Liu F. Genome-wide association study for boll weight in Gossypium hirsutum races. Funct Integr Genomics 2023; 23:331. [PMID: 37940771 DOI: 10.1007/s10142-023-01261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinlei Guo
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ye Tao
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Baihui Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J Adv Res 2023; 53:1-16. [PMID: 36460274 PMCID: PMC10658236 DOI: 10.1016/j.jare.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES This study was to identify superior loci for the improvement of fiber quality and yield. METHODS Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.
Collapse
Affiliation(s)
- Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke 843900, China
| | - Yuanming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Wang Y, Guo X, Cai X, Xu Y, Sun R, Umer MJ, Wang K, Qin T, Hou Y, Wang Y, Zhang P, Wang Z, Liu F, Wang Q, Zhou Z. Genome-Wide Association Study of Lint Percentage in Gossypium hirsutum L. Races. Int J Mol Sci 2023; 24:10404. [PMID: 37373552 DOI: 10.3390/ijms241210404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lint percentage is one of the most essential yield components and an important economic index for cotton planting. Improving lint percentage is an effective way to achieve high-yield in cotton breeding worldwide, especially upland cotton (Gossypium hirsutum L.). However, the genetic basis controlling lint percentage has not yet been systematically understood. Here, we performed a genome-wide association mapping for lint percentage using a natural population consisting of 189 G. hirsutum accessions (188 accessions of G. hirsutum races and one cultivar TM-1). The results showed that 274 single-nucleotide polymorphisms (SNPs) significantly associated with lint percentage were detected, and they were distributed on 24 chromosomes. Forty-five SNPs were detected at least by two models or at least in two environments, and their 5 Mb up- and downstream regions included 584 makers related to lint percentage identified in previous studies. In total, 11 out of 45 SNPs were detected at least in two environments, and their 550 Kb up- and downstream region contained 335 genes. Through RNA sequencing, gene annotation, qRT-PCR, protein-protein interaction analysis, the cis-elements of the promotor region, and related miRNA prediction, Gh_D12G0934 and Gh_A08G0526 were selected as key candidate genes for fiber initiation and elongation, respectively. These excavated SNPs and candidate genes could supplement marker and gene information for deciphering the genetic basis of lint percentage and facilitate high-yield breeding programs of G. hirsutum ultimately.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinlei Guo
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya 572025, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pan Zhang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zihan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya 572025, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
5
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Guo X, Wang Y, Hou Y, Zhou Z, Sun R, Qin T, Wang K, Liu F, Wang Y, Huang Z, Xu Y, Cai X. Genome-Wide Dissection of the Genetic Basis for Drought Tolerance in Gossypium hirsutum L. Races. FRONTIERS IN PLANT SCIENCE 2022; 13:876095. [PMID: 35837453 PMCID: PMC9274165 DOI: 10.3389/fpls.2022.876095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Runrun Sun
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Tengfei Qin
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
7
|
Yang P, Sun X, Liu X, Wang W, Hao Y, Chen L, Liu J, He H, Zhang T, Bao W, Tang Y, He X, Ji M, Guo K, Liu D, Teng Z, Liu D, Zhang J, Zhang Z. Identification of Candidate Genes for Lint Percentage and Fiber Quality Through QTL Mapping and Transcriptome Analysis in an Allotetraploid Interspecific Cotton CSSLs Population. FRONTIERS IN PLANT SCIENCE 2022; 13:882051. [PMID: 35574150 PMCID: PMC9100888 DOI: 10.3389/fpls.2022.882051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Upland cotton (Gossypium hirsutum) has long been an important fiber crop, but the narrow genetic diversity of modern G. hirsutum limits the potential for simultaneous improvement of yield and fiber quality. It is an effective approach to broaden the genetic base of G. hirsutum through introgression of novel alleles from G. barbadense with excellent fiber quality. In the present study, an interspecific chromosome segment substitution lines (CSSLs) population was established using G. barbadense cultivar Pima S-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. A total of 105 quantitative trait loci (QTL), including 85 QTL for fiber quality and 20 QTL for lint percentage (LP), were identified based on phenotypic data collected from four environments. Among these QTL, 25 stable QTL were detected in two or more environments, including four for LP, eleven for fiber length (FL), three for fiber strength (FS), six for fiber micronaire (FM), and one for fiber elongation (FE). Eleven QTL clusters were observed on nine chromosomes, of which seven QTL clusters harbored stable QTL. Moreover, eleven major QTL for fiber quality were verified through analysis of introgressed segments of the eight superior lines with the best comprehensive phenotypes. A total of 586 putative candidate genes were identified for 25 stable QTL associated with lint percentage and fiber quality through transcriptome analysis. Furthermore, three candidate genes for FL, GH_A08G1681 (GhSCPL40), GH_A12G2328 (GhPBL19), and GH_D02G0370 (GhHSP22.7), and one candidate gene for FM, GH_D05G1346 (GhAPG), were identified through RNA-Seq and qRT-PCR analysis. These results lay the foundation for understanding the molecular regulatory mechanism of fiber development and provide valuable information for marker-assisted selection (MAS) in cotton breeding.
Collapse
|
8
|
Feng L, Su Q, Yue H, Wang L, Gao J, Xing L, Xu M, Zhou C, Yang Y, Zhou B. TIP41L, a putative candidate gene conferring both seed size and boll weight, was fine-mapped in an introgression line of Gossypium hirsutum-Gossypium arboreum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111197. [PMID: 35193746 DOI: 10.1016/j.plantsci.2022.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
QTLs for yield-related traits in tetraploid cotton have been widely mapped, but QTLs introduced from diploid species into tetraploid cotton background remain uninvolved. Here, a stable introgression line with the traits of small boll and seed on Chr. A12, IL197 derived from Gossypium hirsutum (2n = AADD = 52) × Gossypium arboreum (2n = AA = 26), was employed to construct the F2 and F3 secondary populations for fine-mapping QTLs of yield-related traits. QTL analysis showed eight QTLs were detected for three traits, boll weight (BW), seed index (SI, one-hundred-seed weight in g), and lint percentage, with 3.94-28.13 % of the phenotypic variance explained. Of them, a stable major QTL, q(BW + SI)-A12-1 controlling both BW and SI and covering the shortest region in Chr. A12, was further narrowed into a 60.09 kb-interval through substitution mapping. Finally, five candidate genes were detected in the interval. The qRT-PCR analysis revealed only TIP41-like family protein (TIP41L) kept up-regulated expression and significantly lower in TM-1 than that in IL197 from -1 DPA to 15 DPA during cotton boll rapid developmental stage. Therefore, TIP41L gene is speculated as the most likely candidate gene. Comparative analysis with the other four allotetraploid species showed TIP41L gene was probably diverged after the formation of allotetraploid cotton, which may be selected and swept during domestication of modern upland cotton because small boll and seed are detrimental to fibre yield of cotton. This research would lay a solid foundation for further elucidating the molecular mechanism of cotton boll and seed development.
Collapse
Affiliation(s)
- Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, People's Republic of China
| | - Qiao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Liu X, Yang L, Wang J, Wang Y, Guo Z, Li Q, Yang J, Wu Y, Chen L, Teng Z, Liu D, Liu D, Guo K, Zhang Z. Analyzing Quantitative Trait Loci for Fiber Quality and Yield-Related Traits From a Recombinant Inbred Line Population With Gossypium hirsutum Race palmeri as One Parent. FRONTIERS IN PLANT SCIENCE 2022; 12:817748. [PMID: 35046989 PMCID: PMC8763314 DOI: 10.3389/fpls.2021.817748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Fiber quality and yield-related traits are important agronomic traits in cotton breeding. To detect the genetic basis of fiber quality and yield related traits, a recombinant inbred line (RIL) population consisting of 182 lines was established from a cross between Gossypium hirsutum cultivar CCRI35 and G. hirsutum race palmeri accession TX-832. The RIL population was deeply genotyped using SLAF-seq and was phenotyped in six environments. A high-density genetic linkage map with 15,765 SNP markers and 153 SSR markers was constructed, with an average distance of 0.30 cM between adjacent markers. A total of 210 fiber quality quantitative trait loci (QTLs) and 73 yield-related QTLs were identified. Of the detected QTLs, 62 fiber quality QTLs and 10 yield-related QTLs were stable across multiple environments. Twelve and twenty QTL clusters were detected on the At and Dt subgenome, respectively. Twenty-three major QTL clusters were further validated through associated analysis and five candidate genes of four stable fiber quality QTLs were identified. This study revealed elite loci influencing fiber quality and yield and significant phenotypic selection regions during G. hirsutum domestication, and set a stage for future utilization of molecular marker assisted breeding in cotton breeding programs.
Collapse
|
10
|
Feng L, Chen Y, Xu M, Yang Y, Yue H, Su Q, Zhou C, Feng G, Ai N, Wang N, Zhou B. Genome-Wide Introgression and Quantitative Trait Locus Mapping Reveals the Potential of Asian Cotton ( Gossypium arboreum) in Improving Upland Cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2021; 12:719371. [PMID: 34408767 PMCID: PMC8365338 DOI: 10.3389/fpls.2021.719371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Gossypium arboreum (2n=2x=26, A2), the putative progenitor of the At-subgenome of Gossypium hirsutum (2n=4x=52, AD), is a repository of genes of interesting that have been eliminated during evolution/domestication of G. hirsutum. However, its valuable genes remain untapped so far due to species isolation. Here, using a synthetic amphiploid (AADDA2A2) previously reported, we developed a set of 289 G. arboreum chromosome segment introgression lines (ILs) in G. hirsutum by expanding the backcrossing population and through precise marker-assisted selection (MAS) although complex chromosomal structural variations existed between parents which severely hindered introgression. Our results showed the total coverage length of introgressed segments was 1,116.29 Mb, representing 78.48% of the At-subgenome in the G. hirsutum background, with an average segment-length of 8.69 Mb. A total of 81 co- quantitative trait loci (QTLs) for yield and fiber quality were identified by both the RSTEP-ADD-based QTL mapping and the genome-wide association study (GWAS) analysis, with 1.01-24.78% of the phenotypic variance explained. Most QTLs for boll traits showed negative additive effects, but G. arboreum still has the potential to improve boll-number traits in G. hirsutum. Most QTLs for fiber quality showed negative additive effects, implying these QTLs were domesticated in G. hirsutum compared with G. arboreum and, a small quantity of fiber quality QTLs showing positive additive effects, conversely; however, indicates that G. arboreum has the underlying genes of enhancing fiber quality of G. hirsutum. This study provides new insights into the breeding genetic potential of G. arboreum, lays the foundation for further mining favorable genes of interest, and provides guidance for inter-ploidy gene transference from relatives into cultivated crops.
Collapse
Affiliation(s)
- Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yu Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Qiao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Feng L, Zhou C, Su Q, Xu M, Yue H, Zhang S, Zhou B. Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110524. [PMID: 32563462 DOI: 10.1016/j.plantsci.2020.110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Fibre strength (FS) is an important quality attribute in the modern textile industry, which is genetically controlled by quantitative trait loci (QTLs). Fine-mapping stable QTLs for FS to identify candidate genes would be valuable for uncovering the genetic basis of fibre quality traits in cotton. Here, a single segment introgression line, IL-D2-2, from the cross of (TM-1×TX-1046) reported in our previous studies, was found to have significantly improved FS compared with the recurrent parent TM-1. To fine-map the QTLs of the FS, we further crossed IL-D2-2 with its recurrent parent TM-1 to produce F2 and F2:3 populations. QTL analysis and substitution mapping showed qFS-Chr. D02 was anchored into a 550.66 kb-interval between two markers, INTR1027 and JESPR-231. This interval contained 67 genes, among which 27 genes related to cell-wall synthesis were selected to conduct qRT-PCR. The results revealed seven genes were expressed significantly differently during the fibre secondary-wall-thickening stage (10-25 days post-anthesis), three being upregulated and four downregulated in IL-D2-2. Both GH_D02G2269 (UDP-glucosyl transferase 84B1) and GH_D02G2289 (unknown function (DUF869)) with nonsynonymous SNPs in IL-D2-2 had significantly downregulated expression, suggesting they were candidates for qFS-Chr. D02. This research provides information about marker-assisted selection for cotton fibre strength improvement.
Collapse
Affiliation(s)
- Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuwen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|