1
|
Ojha R, Tantray I, Banerjee S, Rimal S, Thirunavukkarasu S, Srikrishna S, Chiu W, Mete U, Sharma A, Kakkar N, Lu B. Translation stalling induced mitochondrial entrapment of ribosomal quality control related proteins offers cancer cell vulnerability. RESEARCH SQUARE 2024:rs.3.rs-4899860. [PMID: 39315278 PMCID: PMC11419255 DOI: 10.21203/rs.3.rs-4899860/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ribosome-associated quality control (RQC) monitors ribosomes for aberrant translation. While the role of RQC in neurodegenerative disease is beginning to be appreciated, its involvement in cancer is understudied. Here, we show a positive correlation between RQC proteins ABCE1 and ZNF598 and high-grade muscle-invasive bladder cancer. Translational stalling by the inhibitor emetine (EME) leads to increased mitochondrial localization of RQC factors including ABCE1, ZNF598, and NEMF, which are continuously imported into mitochondria facilitated by increased mitochondrial membrane potential caused by EME. This reduces the availability of these factors in the cytosol, compromising the effectiveness of RQC in handling stalled ribosomes in the cytosol and those associated with the mitochondrial outer membrane (MOM). Imported RQC factors form aggregates inside the mitochondria in a process we term stalling-induced mitochondrial stress (SIMS). ABCE1 plays a crucial role in maintaining mitochondrial health during SIMS. Notably, cancer stem cells (CSCs) exhibit increased expression of ABCE1 and consequently are more resistant to EME-induced mitochondrial dysfunction. This points to a potential mechanism of drug resistance by CSCs. Our study highlights the significance of mitochondrial entrapment of RQC factors such as ABCE1 in determining the fate of cancer cells versus CSCs. Targeting ABCE1 or other RQC factors in translational inhibition cancer therapy may help overcome drug resistance.
Collapse
Affiliation(s)
- Rani Ojha
- Post Graduate Institute of Medical Education and Research
| | | | | | | | | | | | | | - Uttam Mete
- Post Graduate Institute of Medical Education and Research
| | - Aditya Sharma
- Post Graduate Institute of Medical Education and Research
| | - Nandita Kakkar
- Post Graduate Institute of Medical Education and Research
| | | |
Collapse
|
2
|
Hou Q, Shang L, Chen X, Luo Q, Wei L, Zhang C. Convergent evolution of allele-specific gene expression that leads to non-small cell lung cancer in different human populations. J Appl Genet 2024; 65:493-504. [PMID: 38036772 DOI: 10.1007/s13353-023-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Phenotypical innovations during evolution are caused by novel mutations, which are usually heterozygous at the beginning. The gene expressions on two alleles of these mutation sites are not necessarily identical, leading to flexible allele-specific regulation in cell systems. We retrieve the transcriptome data of normal and non-small cell lung cancer (NSCLC) tissues from 47 African Americans (AA) and 50 European Americans (EA). We analyze the differentially expressed genes (DEGs) in NSCLC as well as the tumor-specific mutations. Expression and mutation profiles show convergent evolution in AA and EA populations. The tumor-specific mutations are poorly overlapped, but many of them are located in the same genes, mainly oncogenes and tumor suppressor genes. The DEGs in tumors are majorly caused by the mutated alleles rather than normal alleles. The relative expressions of mutated alleles are highly correlated between AA and EA. The differential expression in NSCLC is predominantly mediated by the mutated alleles on heterozygous sites. This molecular mechanism underlying NSCLC oncogenesis is conserved across different human populations, exhibiting convergent evolution. We present this novel angle that differential expression analysis should be performed separately for different alleles. Our ideas should greatly benefit the cancer community.
Collapse
Affiliation(s)
- Qiuyu Hou
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Lifeng Shang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Xu Chen
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Qiang Luo
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Liang Wei
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Chence Zhang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China.
| |
Collapse
|
3
|
Cai T, Zhang B, Reddy E, Wu Y, Tang Y, Mondal I, Wang J, Ho WS, Lu RO, Wu Z. The mitochondrial stress-induced protein carboxyl-terminal alanine and threonine tailing (msiCAT-tailing) promotes glioblastoma tumorigenesis by modulating mitochondrial functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594447. [PMID: 38798583 PMCID: PMC11118334 DOI: 10.1101/2024.05.15.594447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The rapid and sustained proliferation in cancer cells requires accelerated protein synthesis. Accelerated protein synthesis and disordered cell metabolism in cancer cells greatly increase the risk of translation errors. ribosome-associated quality control (RQC) is a recently discovered mechanism for resolving ribosome collisions caused by frequent translation stalls. The role of the RQC pathway in cancer initiation and progression remains controversial and confusing. In this study, we investigated the pathogenic role of mitochondrial stress-induced protein carboxyl-terminal terminal alanine and threonine tailing (msiCAT-tailing) in glioblastoma (GBM), which is a specific RQC response to translational arrest on the outer mitochondrial membrane. We found that msiCAT-tailed mitochondrial proteins frequently exist in glioblastoma stem cells (GSCs). Ectopically expressed msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5α) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore (MPTP) formation/opening. These changes in mitochondrial properties confer resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells. Highlights The RQC pathway is disturbed in glioblastoma (GBM) cellsmsiCAT-tailing on ATP5α elevates mitochondrial membrane potential and inhibits MPTP openingmsiCAT-tailing on ATP5α inhibits drug-induced apoptosis in GBM cellsInhibition of msiCAT-tailing impedes overall growth of GBM cells.
Collapse
|
4
|
Hasenjäger S, Bologna A, Essen LO, Spadaccini R, Taxis C. C-terminal sequence stability profiling in Saccharomyces cerevisiae reveals protective protein quality control pathways. J Biol Chem 2023; 299:105166. [PMID: 37595870 PMCID: PMC10493509 DOI: 10.1016/j.jbc.2023.105166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Protein quality control (PQC) mechanisms are essential for degradation of misfolded or dysfunctional proteins. An essential part of protein homeostasis is recognition of defective proteins by PQC components and their elimination by the ubiquitin-proteasome system, often concentrating on protein termini as indicators of protein integrity. Changes in amino acid composition of C-terminal ends arise through protein disintegration, alternative splicing, or during the translation step of protein synthesis from premature termination or translational stop-codon read-through. We characterized reporter protein stability using light-controlled exposure of the random C-terminal peptide collection (CtPC) in budding yeast revealing stabilizing and destabilizing features of amino acids at positions -5 to -1 of the C terminus. The (de)stabilization properties of CtPC-degrons depend on amino acid identity, position, as well as composition of the C-terminal sequence and are transferable. Evolutionary pressure toward stable proteins in yeast is evidenced by amino acid residues under-represented in cytosolic and nuclear proteins at corresponding C-terminal positions, but over-represented in unstable CtPC-degrons, and vice versa. Furthermore, analysis of translational stop-codon read-through peptides suggested that such extended proteins have destabilizing C termini. PQC pathways targeting CtPC-degrons involved the ubiquitin-protein ligase Doa10 and the cullin-RING E3 ligase SCFDas1 (Skp1-Cullin-F-box protein). Overall, our data suggest a proteome protection mechanism that targets proteins with unnatural C termini by recognizing a surprisingly large number of C-terminal sequence variants.
Collapse
Affiliation(s)
- Sophia Hasenjäger
- Department of Biology/Genetics, Philipps-University Marburg, Marburg, Germany
| | - Andrea Bologna
- Department of Science and Technology, Universita' Degli Studi Del Sannio, Benevento, Italy
| | - Lars-Oliver Essen
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Roberta Spadaccini
- Department of Science and Technology, Universita' Degli Studi Del Sannio, Benevento, Italy; Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Christof Taxis
- Department of Medicine, Health and Medical University, Erfurt, Germany.
| |
Collapse
|
5
|
Hepatitis B virus (HBV) codon adapts well to the gene expression profile of liver cancer: an evolutionary explanation for HBV's oncogenic role. J Microbiol 2022; 60:1106-1112. [PMID: 36251120 PMCID: PMC9574796 DOI: 10.1007/s12275-022-2371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
Due to the evolutionary arms race between hosts and viruses, viruses must adapt to host translation systems to rapidly synthesize viral proteins. Highly expressed genes in hosts have a codon bias related to tRNA abundance, the primary RNA translation rate determinant. We calculated the relative synonymous codon usage (RSCU) of three hepatitis viruses (HAV, HBV, and HCV), SARS-CoV-2, 30 human tissues, and hepatocellular carcinoma (HCC). After comparing RSCU between viruses and human tissues, we calculated the codon adaptation index (CAI) of viral and human genes. HBV and HCV showed the highest correlations with HCC and the normal liver, while SARS-CoV-2 had the strongest association with lungs. In addition, based on HCC RSCU, the CAI of HBV and HCV genes was the highest. HBV and HCV preferentially adapt to the tRNA pool in HCC, facilitating viral RNA translation. After an initial trigger, rapid HBV/HCV translation and replication may change normal liver cells into HCC cells. Our findings reveal a novel perspective on virus-mediated oncogenesis.
Collapse
|
6
|
Lu B. Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection. Front Cell Dev Biol 2022; 10:970654. [PMID: 36187485 PMCID: PMC9515510 DOI: 10.3389/fcell.2022.970654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Translational control at the initiation, elongation, and termination steps exerts immediate effects on the rate as well as the spatiotemporal dynamics of new protein synthesis, shaping the composition of the proteome. Translational control is particularly important for cells under stress as during viral infection or in disease conditions such as cancer and neurodegenerative diseases. Much has been learned about the control mechanisms acting at the translational initiation step under normal or pathological conditions. However, problems during the elongation or termination steps of translation can lead to ribosome stalling and ribosome collision, which will trigger ribosome-associated quality control (RQC) mechanism. Inadequate RQC may lead to the accumulation of faulty translation products that perturb protein homeostasis (proteostasis). Proteostasis signifies a cellular state in which the synthesis, folding, and degradation of proteins are maintained at a homeostatic state such that an intact proteome is preserved. Cellular capacity to preserve proteostasis declines with age, which is thought to contribute to age-related diseases. Proteostasis failure manifested as formation of aberrant protein aggregates, epitomized by the amyloid plaques in Alzheimer's disease (AD), is a defining feature of neurodegenerative diseases. The root cause of the proteostasis failure and protein aggregation is still enigmatic. Here I will review recent studies supporting that faulty translation products resulting from inadequate RQC of translational stalling and ribosome collision during the translation of problematic mRNAs can be the root cause of proteostasis failure and may represent novel therapeutic targets for neurodegenerative diseases. I will also review evidence that translation regulation by RQC is operative in cancer cells and during viral infection. Better understanding of RQC mechanism may lead to novel therapeutic strategies against neurodegenerative diseases, cancer, and viral infections, including the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B. SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J Appl Genet 2022; 63:159-167. [PMID: 34655422 PMCID: PMC8520108 DOI: 10.1007/s13353-021-00665-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Abstract
During SARS-CoV-2 proliferation, the translation of viral RNAs is usually the rate-limiting step. Understanding the molecular details of this step is beneficial for uncovering the origin and evolution of SARS-CoV-2 and even for controlling the pandemic. To date, it is unclear how SARS-CoV-2 competes with host mRNAs for ribosome binding and efficient translation. We retrieved the coding sequences of all human genes and SARS-CoV-2 genes. We systematically profiled the GC content and folding energy of each CDS. Considering that some fixed or polymorphic mutations exist in SARS-CoV-2 and human genomes, all algorithms and analyses were applied to both pre-mutate and post-mutate versions. In SARS-CoV-2 but not human, the 5-prime end of CDS had lower GC content and less RNA structure than the 3-prime part, which was favorable for ribosome binding and efficient translation initiation. Globally, the fixed and polymorphic mutations in SARS-CoV-2 had created an even lower GC content at the 5-prime end of CDS. In contrast, no similar patterns were observed for the fixed and polymorphic mutations in human genome. Compared with human RNAs, the SARS-CoV-2 RNAs have less RNA structure in the 5-prime end and thus are more favorable of fast translation initiation. The fixed and polymorphic mutations in SARS-CoV-2 are further amplifying this advantage. This might serve as a strategy for SARS-CoV-2 to adapt to the human host.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Jin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Yaoyao Miao
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Xiaoping Yang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Bin Yin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China.
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Li J, Yu CP, Li Q, Chang S, Xie LL, Wang S. Large-scale omics data reveal the cooperation of mutation-circRNA-miRNA-target gene network in liver cancer oncogenesis. Future Oncol 2021; 18:163-178. [PMID: 34677082 DOI: 10.2217/fon-2021-0940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: Clarifying the initial trigger of the differentially expressed genes in cancers helps researchers understand the cellular system as a whole network. Materials & methods: We retrieve the transcriptome and translatome of tumor and normal tissues from ten liver cancer patients and define differentially expressed genes and tumor-specific mutations. We associate the oncogenesis with the mutations by target prediction and experimental verification. Results: Upregulated genes have tumor-specific mutations in 3'UTRs that abolish the binding of miRNAs. For downregulated genes, their corresponding miRNAs are mutually targeted by two circRNAs, with mutations in base-pairing regions. Transfection experiments support the oncogenic role of these mutations. Conclusions: The tumor-specific mutations serve as the initial trigger of liver cancer. The mutation-circRNA-miRNA-target gene chain is completed.
Collapse
Affiliation(s)
- Jian Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Chun-Peng Yu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Qun Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Shuai Chang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Ling-Ling Xie
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Song Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| |
Collapse
|
9
|
Jiang Y, Cao X, Wang H. Comparative genomic analysis of a naturally born serpentized pig reveals putative mutations related to limb and bone development. BMC Genomics 2021; 22:629. [PMID: 34454433 PMCID: PMC8399796 DOI: 10.1186/s12864-021-07925-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is believed that natural selection acts on the phenotypical changes caused by mutations. Phenotypically, from fishes to amphibians to reptiles, the emergence of limbs greatly facilitates the landing of ancient vertebrates, but the causal mutations and evolutionary trajectory of this process remain unclear. RESULTS We serendipitously obtained a pig of limbless phenotype. Mutations specific to this handicapped pig were identified using genome re-sequencing and comparative genomic analysis. We narrowed down the causal mutations to particular chromosomes and even several candidate genes and sites, such like a mutation-containing codon in gene BMP7 (bone morphogenetic protein) which was conserved in mammals but variable in lower vertebrates. CONCLUSIONS We parsed the limbless-related mutations in the light of evolution. The limbless pig shows phenocopy of the clades before legs were evolved. Our findings might help deduce the emergence of limbs during vertebrate evolution and should be appealing to the broad community of human genetics and evolutionary biology.
Collapse
Affiliation(s)
- Yankai Jiang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xinyue Cao
- School of Medicine and Nursing, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haibin Wang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
10
|
Mutation profiling of a limbless pig reveals genome-wide regulation of RNA processing related to bone development. J Appl Genet 2021; 62:643-653. [PMID: 34278546 DOI: 10.1007/s13353-021-00653-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Mutation is the basis of phenotypic changes and serves as the source of natural selection. The development of limbs has been the milestone in vertebrate evolution. Several limb and bone-related genes were verified experimentally, but other indirect and regulatory factors of limb development remained untested, especially very few cases were observed in natural environment. We report a naturally born serpentized pig without hindlimbs. Whole genome sequencing followed by comparative genomic analysis revealed multiple interesting patterns on the handicapped pig-specific mutations. Although the bone-related genes are not directly subjected to mutations, other regulatory factors such as the RNA deaminase genes Adar are damaged in the handicapped pig, leading to the abolished A-to-I deamination in many functional, conserved genes as well as the bone-related genes. This is a precious case that the limbless phenotype is observed in naturally born non-model organisms. Our study broadened the generality of the limbless phenotype across mammals and extended the regulation of hindlimb development to other non-bone-related genes. Our knowledge of limb and bone-related mutations and regulation would also contribute to human genetics.
Collapse
|
11
|
Yu Y, Li Y, Dong Y, Wang X, Li C, Jiang W. Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Future Virol 2021. [PMCID: PMC8132620 DOI: 10.2217/fvl-2021-0078] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To adapt to human host environment, synonymous mutations in SARS-CoV-2 are shaped by tRNA selection, energy cost and RNA structure.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Anesthesiology, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Yan Li
- Department of Cardiology, Qingdao Center Hospital, Qingdao, Shandong, China
| | - Yu Dong
- Department of Intervention, Qingdao Center Hospital, Qingdao, Shandong, China
| | - Xuekun Wang
- Department of Cardiology, Qingdao Center Hospital, Qingdao, Shandong, China
| | - Chunxiao Li
- Department of Cardiology, Qingdao Center Hospital, Qingdao, Shandong, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, Shandong, China
| |
Collapse
|
12
|
Li J, Li Q, Yu CP, Chang S, Xie LL, Wang S. Genome-wide expression changes mediated by A-to-I RNA editing correlate with hepatic oncogenesis. Transl Cancer Res 2021; 10:2725-2737. [PMID: 35116583 PMCID: PMC8798912 DOI: 10.21037/tcr-21-236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is one of the most prevalent RNA modifications in the animal kingdom. Since inosine is recognized as guanosines, the A-to-I process mimics A-to-G DNA mutations but can be controlled in a more flexible manner compared to DNA alterations. Methods We parsed the transcriptomes and translatomes of liver cancer and normal tissues from ten patients. We profiled the landscape of the A-to-I RNA editome in these samples and interrogated whether the A-to-I processes participated in the gene expression regulation in oncogenesis. Results Globally, editing activity was enhanced in all tumor samples compared to that in normal samples. Accordingly, expression of the gene encoding the RNA editing enzyme ADAR (adenosine deaminase acting on RNA) was elevated. Two intronic self-editing sites in ADAR mRNAs controlled its splicing pattern and may regulate its translation efficiency (TE). Moreover, the expression of oncogenes was generally upregulated in tumors, whereas tumor suppressor genes (TSG) were downregulated, possibly due to alterations to microRNA binding sites or RNA splicing defects caused by A-to-I editing. Conclusions A-to-I RNA editing plays a crucial role in the oncogenesis of liver cancer. ADAR regulates its own expression via self-editing, and it also affects global transcriptomes and translatomes involving cancer-related genes by RNA editing and changing their expression patterns.
Collapse
Affiliation(s)
- Jian Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun-Peng Yu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Chang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling-Ling Xie
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|