1
|
Pedrozo R, Osakina A, Huang Y, Nicolli CP, Wang L, Jia Y. Status on Genetic Resistance to Rice Blast Disease in the Post-Genomic Era. PLANTS (BASEL, SWITZERLAND) 2025; 14:807. [PMID: 40094775 PMCID: PMC11901910 DOI: 10.3390/plants14050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production, necessitating the development of resistant cultivars through genetic improvement. Breakthroughs in rice genomics, including the complete genome sequencing of japonica and indica subspecies and the availability of various sequence-based molecular markers, have greatly advanced the genetic analysis of blast resistance. To date, approximately 122 blast-resistance genes have been identified, with 39 of these genes cloned and molecularly characterized. The application of these findings in marker-assisted selection (MAS) has significantly improved rice breeding, allowing for the efficient integration of multiple resistance genes into elite cultivars, enhancing both the durability and spectrum of resistance. Pangenomic studies, along with AI-driven tools like AlphaFold2, RoseTTAFold, and AlphaFold3, have further accelerated the identification and functional characterization of resistance genes, expediting the breeding process. Future rice blast disease management will depend on leveraging these advanced genomic and computational technologies. Emphasis should be placed on enhancing computational tools for the large-scale screening of resistance genes and utilizing gene editing technologies such as CRISPR-Cas9 for functional validation and targeted resistance enhancement and deployment. These approaches will be crucial for advancing rice blast resistance, ensuring food security, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Rodrigo Pedrozo
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Aron Osakina
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yixiao Huang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Camila Primieri Nicolli
- Entomology and Plant Pathology Department, University of Arkansas, Rice Research and Extension Center (RREC), Stuttgart, AR 72160, USA;
| | - Li Wang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| |
Collapse
|
2
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Rim EY, Garrett OD, Howard AJ, Shim Y, Li Y, Van Dyke JE, Packer RC, Ho N, Jain R, Stewart V, Dinesh-Kumar SP, Notwell JH, Ronald PC. Directed Evolution of a Plant Immune Receptor for Broad Spectrum Effector Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.614878. [PMID: 39975188 PMCID: PMC11838462 DOI: 10.1101/2024.09.30.614878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Rapid development of immune receptors that protect crops from emerging pathogens is a critical challenge 1,2. While novel immune receptors that recognize previously undetected pathogen effectors could provide protection against a wider range of pathogens, engineering such receptors has been constrained by the low throughput and speed of in planta testing. We established yeast surface display as a high throughput platform to recapitulate plant immune receptor-ligand interactions and evolve new binding capabilities. Using this directed evolution platform, we engineered the ligand binding domain of the rice immune receptor Pik-1 to recognize diverse effectors from the fast-evolving fungal pathogen Magnaporthe oryzae. Our approach yielded Pik-1 ligand binding domains with affinity for variants of the M. oryzae effector Avr-Pik that previously escaped detection by known rice alleles of Pik-1, with in planta assays confirming functional recognition of these effectors. Additional rounds of mutagenesis and selection led to a Pik-1 domain that binds all tested Avr-Pik variants as well as the evolutionarily divergent effector AvrPiz-t. These results demonstrate the potential of directed evolution to engineer immune receptors with new-to-nature recognition of a wide range of pathogen-derived ligands and accelerate development of broad spectrum resistance in crops.
Collapse
Affiliation(s)
- Ellen Y. Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Oscar D. Garrett
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Alexander J. Howard
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Yejin Shim
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Jonathan E. Van Dyke
- Flow Cytometry Shared Resource Laboratory, University of California, Davis, CA, 95616, USA
| | - Ryan C. Packer
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Nguyen Ho
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Valley Stewart
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | | | - James H. Notwell
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Howard AJ, Rim EY, Garrett OD, Shim Y, Notwell JH, Ronald PC. Combining Directed Evolution with Machine Learning Enables Accurate Genotype-to-Phenotype Predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635131. [PMID: 39974914 PMCID: PMC11838293 DOI: 10.1101/2025.01.27.635131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Linking sequence variation to phenotypic effects is critical for efficient exploitation of large genomic datasets. Here we present a novel approach combining directed evolution with protein language modeling to characterize naturally-evolved variants of a rice immune receptor. Using high-throughput directed evolution, we engineered the rice immune receptor Pik-1 to bind and recognize the fungal proteins Avr-PikC and Avr-PikF, which evade detection by currently characterized Pik-1 alleles. A protein language model was fine-tuned on this data to correlate sequence variation with ligand binding behavior. This modeling was then used to characterize Pik-1 variants found in the 3,000 Rice Genomes Project dataset. Two variants scored highly for binding against Avr-PikC, and in vitro analyses confirmed their improved ligand binding over the wild-type Pik-1 receptor. Overall, this machine learning approach identified promising sources of disease resistance in rice and shows potential utility for exploring the phenotypic variation of other proteins of interest.
Collapse
Affiliation(s)
- Alexander J. Howard
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Ellen Y. Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Oscar D. Garrett
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Yejin Shim
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - James H. Notwell
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
6
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Abdelbacki AMM, Rajput N, Jiang X, Rao B, Zuo S. Allelic variation in rice blast resistance: a pathway to sustainable disease management. Mol Biol Rep 2024; 51:935. [PMID: 39180629 DOI: 10.1007/s11033-024-09854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ashraf M M Abdelbacki
- Deanship of Skills Development, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nimra Rajput
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bisma Rao
- Department of Public Health, Medical College, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Gu F, Han Z, Zou X, Xie H, Chen C, Huang C, Guo T, Wang J, Wang H. Unveiling the Role of RNA Recognition Motif Proteins in Orchestrating Nucleotide-Binding Site and Leucine-Rich Repeat Protein Gene Pairs and Chloroplast Immunity Pathways: Insights into Plant Defense Mechanisms. Int J Mol Sci 2024; 25:5557. [PMID: 38791594 PMCID: PMC11122538 DOI: 10.3390/ijms25105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
Collapse
Affiliation(s)
- Fengwei Gu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhikai Han
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodi Zou
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huabin Xie
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chun Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cuihong Huang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Tao Guo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiafeng Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Xiao G, Wang W, Liu M, Li Y, Liu J, Franceschetti M, Yi Z, Zhu X, Zhang Z, Lu G, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:810-824. [PMID: 36178632 DOI: 10.1111/jipb.13375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbin Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Marina Franceschetti
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhaofeng Yi
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, 1301, Philippines
| |
Collapse
|
9
|
Tian D, Deng Y, Yang X, Li G, Li Q, Zhou H, Chen Z, Guo X, Su Y, Luo Y, Yang L. Association analysis of rice resistance genes and blast fungal avirulence genes for effective breeding resistance cultivars. Front Microbiol 2022; 13:1007492. [DOI: 10.3389/fmicb.2022.1007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Utilization of rice blast-resistance (R) genes is the most economical and environmentally friendly method to control blast disease. However, rice varieties with R genes influence the outcome of genetic architectures of Magnaporthe oryzae (M. oryzae), and mutations in avirulence (AVR) genes of M. oryzae may cause dysfunction of the corresponding R genes in rice varieties. Although monitoring and characterizing rice R genes and pathogen AVR genes in field populations may facilitate the implementation of effective R genes, little is known about the changes of R genes over time and their ultimate impact on pathogen AVR genes. In this study, 117 main cultivated rice varieties over the past five decades and 35 M. oryzae isolates collected from those diseased plants were analyzed by PCR using gene-specific markers of the nine R genes and six primer pairs targeting the coding sequence or promoter of AVR genes, respectively. The R genes Pigm, Pi9, Pi2, Piz-t, Pi-ta, Pik, Pi1, Pikp, and Pikm were identified in 5, 0, 1, 4, 18, 0, 2, 1, and 0 cultivars, respectively. Significantly, none of these R genes had significant changes that correlated to their application periods of time. Among the four identified AVR genes, AVR-Pik had the highest amplification frequency (97.14%) followed by AVR-Pita (51.43%) and AVR-Pi9 (48.57%); AVR-Piz-t had the lowest frequency (28.57%). All these AVR genes except AVR-Pi9 had 1–2 variants. Inoculation mono-genic lines contained functional genes of Pi2/9 and Pik loci with 14 representative isolates from those 35 ones revealed that the presence of certain AVR-Piz-t, AVR-Pita variants, and AVR-Pik-E + AVR-Pik-D in M. oryzae populations, and these variants negated the ability of the corresponding R genes to confer resistance. Importantly, Pi2, Pi9, and Pigm conferred broad-spectrum resistance to these local isolates. These findings reveal that the complex genetic basis of M. oryzae and some effective blast R genes should be considered in future rice blast-resistance breeding programs.
Collapse
|
10
|
Tan Q, He H, Chen W, Huang L, Zhao D, Chen X, Li J, Yang X. Integrated genetic analysis of leaf blast resistance in upland rice: QTL mapping, bulked segregant analysis and transcriptome sequencing. AOB PLANTS 2022; 14:plac047. [PMID: 36567764 PMCID: PMC9773827 DOI: 10.1093/aobpla/plac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Elite upland rice cultivars have the advantages of less water requirement along with high yield but are usually susceptible to various diseases. Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice. Identification of new sources of resistance and the introgression of major resistance genes into elite cultivars are required for sustainable rice production. In this study, an upland rice genotype UR0803 was considered an emerging source of blast resistance. An F2 mapping population was developed from a cross between UR0803 and a local susceptible cultivar Lijiang Xintuan Heigu. The individuals from the F2 population were evaluated for leaf blast resistance in three trials 7 days after inoculation. Bulked segregant analysis (BSA) by high-throughput sequencing and SNP-index algorithm was performed to map the candidate region related to disease resistance trait. A major quantitative trait locus (QTL) for leaf blast resistance was identified on chromosome 11 in an interval of 1.61-Mb genomic region. The candidate region was further shortened to a 108.9-kb genomic region by genotyping the 955 individuals with 14 SNP markers. Transcriptome analysis was further performed between the resistant and susceptible parents, yielding a total of 5044 differentially expressed genes (DEGs). There were four DEGs in the candidate QTL region, of which, two (Os11g0700900 and Os11g0704000) were upregulated and the remaining (Os11g0702400 and Os11g0703600) were downregulated in the susceptible parent after inoculation. These novel candidate genes were functionally annotated to catalytic response against disease stimulus in cellular membranes. The results were further validated by a quantitative real-time PCR analysis. The fine-mapping of a novel QTL for blast resistance by integrative BSA mapping and transcriptome sequencing enhanced the genetic understanding of the mechanism of blast resistance in upland rice. The most suitable genotypes with resistance alleles would be useful genetic resources in rice blast resistance breeding.
Collapse
Affiliation(s)
| | | | - Wen Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Lu Huang
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Dailin Zhao
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Xiaojun Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Jiye Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | | |
Collapse
|
11
|
Xi Y, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem 2022; 66:513-526. [PMID: 35735291 PMCID: PMC9528088 DOI: 10.1042/ebc20210079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) is an important component of plant immunity. NLRs have a conserved modular architecture and can be subdivided according to their signaling domain that is mostly a coiled-coil (CC) or a Toll/Interleukin1 receptor (TIR) domain into CNLs and TNLs. Single NLR proteins are often sufficient for both effector recognition and immune activation. However, sometimes, they act in pairs, where two different NLRs are required for disease resistance. Functional studies have revealed that in these cases one NLR of the pair acts as a sensor (sNLR) and one as a helper (hNLR). The genes corresponding to such resistance protein pairs with one-to-one functional co-dependence are clustered, generally with a head-to-head orientation and shared promoter sequences. sNLRs in such functional NLR pairs have additional, non-canonical and highly diverse domains integrated in their conserved modular architecture, which are thought to act as decoys to trap effectors. Recent structure-function studies on the Arabidopsis thaliana TNL pair RRS1/RPS4 and on the rice CNL pairs RGA4/RGA5 and Pik-1/Pik-2 are unraveling how such protein pairs function together. Focusing on these model NLR pairs and other recent examples, this review highlights the distinctive features of NLR pairs and their various fascinating mode of action in pathogen effector perception. We also discuss how these findings on NLR pairs pave the way toward improved plant disease resistance.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
12
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|