1
|
John E, Lesluyes T, Baker TM, Tarabichi M, Gillenwater A, Wang JR, Van Loo P, Zhao X. Reconstructing oral cavity tumor evolution through brush biopsy. Sci Rep 2024; 14:22591. [PMID: 39343812 PMCID: PMC11439926 DOI: 10.1038/s41598-024-72946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Oral potentially malignant disorders (OPMDs) with genomic alterations have a heightened risk of evolving into oral squamous cell carcinoma (OSCC). Currently, genomic data are typically obtained through invasive tissue biopsy. However, brush biopsy is a non-invasive method that has been utilized for identifying dysplastic cells in OPMD but its effectiveness in reflecting the genomic landscape of OPMDs remains uncertain. This pilot study investigates the potential of brush biopsy samples in accurately reconstructing the genomic profile and tumor evolution in a patient with both OPMD and OSCC. We analyzed single nucleotide variants (SNVs), copy number aberrations (CNAs), and subclonal architectures in paired tissue and brush biopsy samples. The results showed that brush biopsy effectively captured 90% of SNVs and had similar CNA profiles as those seen in its paired tissue biopsies in all lesions. It was specific, as normal buccal mucosa did not share these genomic alterations. Interestingly, brush biopsy revealed shared SNVs and CNAs between the distinct OPMD and OSCC lesions from the same patient, indicating a common ancestral origin. Subclonal reconstruction confirmed this shared ancestry, followed by divergent evolution of the lesions. These findings highlight the potential of brush biopsies in accurately representing the genomic profile of OPL and OSCC, proving insight into reconstructing tumor evolution.
Collapse
Affiliation(s)
- Evit John
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
| | | | - Toby M Baker
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
| | - Maxime Tarabichi
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Gillenwater
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Xiao Zhao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA.
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
2
|
Yong ZWE, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZAA, Ismail SM, Sharifah NA, Mustafa WMW, Abraham MT, Tay KK, Zain RB. Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep 2014; 4:6073. [PMID: 25123227 PMCID: PMC4133705 DOI: 10.1038/srep06073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022] Open
Abstract
The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers.
Collapse
Affiliation(s)
- Zachary Wei Ern Yong
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zuraiza Mohamad Zaini
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Akmal Sharifah
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur
| | | | - Mannil Thomas Abraham
- Department of Oral and Maxillofacial Surgery, Hospital Tengku Ampuan Rahimah, Klang, Malaysia
| | - Keng Kiong Tay
- Oral Surgery Clinic, Hospital Umum Sarawak, Kuching, Malaysia
| | - Rosnah Binti Zain
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Jacobs S. Sample processing considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues. Cold Spring Harb Protoc 2012; 2012:1195-1202. [PMID: 23118355 DOI: 10.1101/pdb.ip071753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Whole Genome Sampling Analysis (WGSA) assay in combination with Affymetrix GeneChip Mapping Arrays is used for copy number analysis of high-quality DNA samples (i.e., samples that have been collected from blood, fresh or frozen tissue, or cell lines). Formalin-fixed, paraffin-embedded (FFPE) samples, however, represent the most prevalent form of archived clinical samples, but they provide additional challenges for molecular assays. FFPE processing usually results in the degradation of FFPE DNA and in the contamination and chemical modification of these DNA samples. Because of these issues, FFPE DNA is not suitable for all molecular assays designed for high-quality DNA samples. Strategies recommended for processing FFPE DNA samples through WGSA and to the Mapping arrays are described here.
Collapse
|
4
|
Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Težak Z, Philip R, Bijwaard K, Fuscoe JC. Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 2012; 13:217. [PMID: 22655855 PMCID: PMC3403925 DOI: 10.1186/1471-2164-13-217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/01/2012] [Indexed: 11/21/2022] Open
Abstract
Background Genotyping assays often require substantial amounts of DNA. To overcome the problem of limiting amounts of available DNA, Whole Genome Amplification (WGA) methods have been developed. The multiple displacement amplification (MDA) method using Φ29 polymerase has become the preferred choice due to its high processivity and low error rate. However, the uniformity and fidelity of the amplification process across the genome has not been extensively characterized. Results To assess amplification uniformity, we used array-based comparative genomic hybridization (aCGH) to evaluate DNA copy number variations (CNVs) in DNAs amplified by two MDA kits: GenomiPhi and REPLI-g. The Agilent Human CGH array containing nearly one million probes was used in this study together with DNAs from a normal subject and 2 cystic fibrosis (CF) patients. Each DNA sample was amplified 4 independent times and compared to its native unamplified DNA. Komogorov distances and Phi correlations showed a high consistency within each sample group. Less than 2% of the probes showed more than 2-fold CNV introduced by the amplification process. The two amplification kits, REPLI-g and GenomiPhi, generate very similar amplified DNA samples despite the differences between the unamplified and amplified DNA samples. The results from aCGH analysis indicated that there were no obvious CNVs in the CFTR gene region due to WGA when compared to unamplified DNA. This was confirmed by quantitative real-time PCR copy number assays at 10 locations within the CFTR gene. DNA sequencing analysis of a 2-kb region within the CFTR gene showed no mutations introduced by WGA. Conclusion The relatively high uniformity and consistency of the WGA process, coupled with the low replication error rate, suggests that WGA DNA may be suitable for accurate genotyping. Regions of the genome that were consistently under-amplified were found to contain higher than average GC content. Because of the consistent differences between the WGA DNA and the native unamplified DNA, characterization of the genomic region of interest, as described here, will be necessary to ensure the reliability of genotyping results from WGA DNA.
Collapse
Affiliation(s)
- Tao Han
- Division of Systems Biology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
6
|
Mao X, Young BD, Lu YJ. The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 2011; 8:219-28. [PMID: 18645599 DOI: 10.2174/138920207781386924] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/22/2007] [Accepted: 03/02/2007] [Indexed: 01/21/2023] Open
Abstract
The development of microarray technology has had a significant impact on the genetic analysis of human disease. The recently developed single nucleotide polymorphism (SNP) array can be used to measure both DNA polymorphism and dosage changes. Our laboratory has applied SNP microarray analysis to uncover frequent uniparental disomies and sub-microscopic genomic copy number gains and losses in different cancers. This review will focus on the wide range of applications of SNP microarray analysis to cancer research. SNP array genotyping can determine loss of heterozygosity, genomic copy number changes and DNA methylation alterations of cancer cells. The same technology can also be used to investigate allelic association in cancers. Therefore, it can be applied to the identification of cancer predisposition genes, oncogenes and tumor suppressor genes in specific types of tumors. As a consequence, they have potential in cancer risk assessment, diagnosis, prognosis and treatment selection.
Collapse
Affiliation(s)
- Xueying Mao
- Medical Oncology Centre, Cancer Institute, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
7
|
Akatsuka S, Toyokuni S. Genome-scale approaches to investigate oxidative DNA damage. J Clin Biochem Nutr 2010; 47:91-7. [PMID: 20838563 PMCID: PMC2935159 DOI: 10.3164/jcbn.10-38r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/10/2010] [Indexed: 12/22/2022] Open
Abstract
In the trend of biological science after the completion of the human genome project, appreciation of an organism as a system rather than the sum of many molecular functions is necessary. On the investigation of DNA damage and repair, therefore, the orientation toward systematic and comprehensive genome-scale approaches is rapidly growing. The immunoprecipitation-based technique combined with high-density microarrays is one of the promising methods to provide access to such novel research strategies. We propose this sort of research area as oxygenomics.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | |
Collapse
|
8
|
Abstract
Genetic abnormalities in leukaemia range from single gene defects to chromosomal translocations, inversions, losses and gains. While conventional technologies can detect macroscopic abnormalities, finding smaller regions remained a challenge until the recent introduction of high-resolution genomic platforms. Microarrays based on single nucleotide polymorphisms is one such technology. It has made possible genome-wide allelic association studies of predisposition to common clinical problems. This approach is also being used to identify somatic changes in cancer, such as loss, gain and copy-neutral loss of heterozygosity (CN-LOH), which are below the level of detection by conventional systems. Such arrays have been used to identify key genes involved in paediatric acute lymphoblastic leukaemia. We have used these arrays to identify regions of CN-LOH on a genome-wide scale in a large series of acute myeloid leukaemia samples, which so far has not been possible through any other technology.
Collapse
|
9
|
Chen Y, Chen C. DNA copy number variation and loss of heterozygosity in relation to recurrence of and survival from head and neck squamous cell carcinoma: a review. Head Neck 2008; 30:1361-83. [PMID: 18642290 PMCID: PMC3220418 DOI: 10.1002/hed.20861] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Genetic aberrations, such as DNA copy number variation (CNV) and loss of heterozygosity (LOH), have been implicated in head and neck squamous cell carcinoma (HNSCC) initiation and progression. This review examines CNV and LOH as predictors of HNSCC recurrence and mortality. We searched PubMed for relevant publications and compared and discussed results from the articles. Certain CNV and LOH events have consistently been associated with HNSCC recurrence and survival. The recent high-resolution single nucleotide polymorphism (SNP) arrays have the potential to identify many more genetic changes and concurrent genome-wide CNV, copy-neutral and/or allelic imbalance LOH in HNSCC that may bear on prognosis. Our review confirms that outcome in HNSCC can be predicted to a considerable extent by the presence of tumor cell genetic aberrations. It points out the limitations of some methodologies that were used in the past and discusses the advantages and challenges of using genome-wide SNP arrays.
Collapse
Affiliation(s)
- Yu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Department of Epidemiology and Department of Otolaryngology: Head and NeckSurgery, University of Washington
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Department of Epidemiology and Department of Otolaryngology: Head and NeckSurgery, University of Washington
| |
Collapse
|
10
|
Cunningham JM, Sellers TA, Schildkraut JM, Fredericksen ZS, Vierkant RA, Kelemen LE, Gadre M, Phelan CM, Huang Y, Meyer JG, Pankratz VS, Goode EL. Performance of amplified DNA in an Illumina GoldenGate BeadArray assay. Cancer Epidemiol Biomarkers Prev 2008; 17:1781-9. [PMID: 18628432 PMCID: PMC2732190 DOI: 10.1158/1055-9965.epi-07-2849] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Whole genome amplification (WGA) offers a means to enrich DNA quantities for epidemiologic studies. We used an ovarian cancer study of 1,536 single nucleotide polymorphisms (SNPs) and 2,368 samples to assess performance of multiple displacement amplification (MDA) WGA using an Illumina GoldenGate BeadArray. Initial screening revealed successful genotyping for 93.4% of WGA samples and 99.3% of genomic samples, and 93.2% of SNPs for WGA samples and 96.3% of SNPs for genomic samples. SNP failure was predicted by Illumina-provided designability rank, %GC (P < or = 0.002), and for WGA only, distance to telomere and Illumina-provided SNP score (P < or = 0.002). Distance to telomere and %GC were highly correlated; adjustment for %GC removed the association between distance to telomere and SNP failure. Although universally high, per-SNP call rates were related to designability rank, SNP score, %GC, minor allele frequency, distance to telomere (P < or = 0.01), and, for WGA only, Illumina-provided validation class (P < 0.001). We found excellent concordance generally (>99.0%) among 124 WGA:genomic replicates, 15 WGA replicates, 88 replicate aliquots of the same WGA preparation, and 25 genomic replicates. Where there was discordance, it was across WGA:genomic replicates but limited to only a few samples among other replicates suggesting the introduction of error. Designability rank and SNP score correlated with WGA:genomic concordance (P < 0.001). In summary, use of MDA WGA DNA is feasible; however, caution is warranted regarding SNP selection and analysis. We recommend that biological SNP characteristics, notably distance to telomere and GC content (<50% GC recommended), as well as Illumina-provided metrics be considered in the creation of GoldenGate assays using MDA WGA DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Madhura Gadre
- College of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Yifan Huang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | |
Collapse
|
11
|
Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol 2008; 439:1-18. [PMID: 18370092 DOI: 10.1007/978-1-59745-188-8_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In many large genetic studies, the amount of available DNA can be one of the criteria for selecting samples for study. In the case of large population cohorts, selecting samples based on their DNA yield can lead to biased sample selection. In addition, many valuable clinical and research sample collections exist in which the amount of DNA is very small. Unbiased whole genome amplification (WGA) of such unique samples enables genomewide scale genetic studies that would have been impossible otherwise. Multiply primed rolling circle amplification (MPRCA) and multiple displacement amplification (MDA) methods are based on the same principle. The DNA amplification is non-PCR based and uses Phi29 DNA polymerase and random hexamer primers for unbiased whole genome amplification. MDA is used for linear DNA molecules, such as genomic DNA. This chapter reviews the various applications in which whole genome amplified DNA can be used, the types of commercial kits available, and the quality control steps necessary before using the DNA in the genetic studies.
Collapse
|
12
|
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequent form of DNA variation present in the human genome, and millions of SNPs have been identified http://www.ncbi.nlm.nih.gov/SNP/). Because of their abundance, even spacing, and stability across the genome, SNPs have significant advantages over other genetic markers (such as restriction fragment length polymorphisms and microsatellite markers) as a basis for high-resolution whole genome allelotyping. SNP scoring is easily automated and high-density oligonucleotide arrays have recently been generated to support large-scale high throughput SNP analysis. High-density SNP allele arrays have improved significantly and it is now possible to genotype hundreds of thousands SNP markers using a single SNP array. In this chapter, we will provide a detailed experimental protocol of Affymetrix GeneChip SNP Mapping Array-based whole genome SNP genotyping assay.
Collapse
|