1
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhang D, McLenachan S, Chen SC, Zaw K, Alziyadat Y, Zhang X, Lamey TM, Thompson JA, McLaren TL, Mellough C, De Roach JN, Chen FK. Generation of two induced pluripotent stem cell lines from a patient with recessive inherited retinal disease caused by compound heterozygous mutations in SNRNP200. Stem Cell Res 2021; 51:102154. [PMID: 33429167 DOI: 10.1016/j.scr.2020.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
The human induced pluripotent stem cell (iPSC) lines LEIi015-A and LEIi015-B were derived from a patient with inherited retinal disease caused by compound heterozygous mutations in the SNRNP200 gene (c.[1792C>T];[3341T>C]). Dermal fibroblasts were transfected with episomal plasmids carrying transgenes encoding OCT4, SOX2, KLF4, L-MYC, LIN28, mir302/367 microRNA and shRNA for P53. The clonal iPSC lines LEIi015-A and LEIi015-B expressed iPSC markers, were free from genomic alterations and demonstrated trilineage differentiation potential.
Collapse
Affiliation(s)
- Dan Zhang
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Khine Zaw
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Yaqin Alziyadat
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiao Zhang
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Carla Mellough
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
3
|
NOVEL BEST1 MUTATIONS DETECTED BY NEXT-GENERATION SEQUENCING IN A CHINESE POPULATION WITH VITELLIFORM MACULAR DYSTROPHY. Retina 2020; 39:1613-1622. [PMID: 29781975 DOI: 10.1097/iae.0000000000002183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To characterize novel BEST1 mutations and the phenotype-genotype correlations in vitelliform macular dystrophy in a Chinese population. METHODS Seventeen individuals affected by vitelliform macular dystrophy underwent detailed ophthalmic examinations, including a best-corrected visual acuity test, slit-lamp biomicroscopy, fundus photography, spectral-domain optical coherence tomography, fundus autofluorescence, fluorescein angiography, and optical coherence tomography angiography. Next-generation sequencing was used to screen 790 genes frequently involved in common inherited nonsyndromic eye diseases in all participants. Sanger sequencing was used to identify possible disease-causing variants. RESULTS The mean ± SD age of the patients was 44.20 ± 15.09 (range: 16-69) years. Seven novel BEST1 mutations were identified: six heterozygous missense (p.Thr307Asn, p.Ile295The, p.Leu75Pro, p.Thr2Ser, p.Ser79Tyr, and p.Val81Leu) and one frameshift (p.Glu115GlufsX120) mutation. Choroidal neovascularization was detected in two probands. One individual presented with subfoveal focal choroidal excavation. Arden ratios obtained by electrooculography were less than the 1.5 cutoff value in 7 patients. No mutations were identified in 2 patients, one of whom had a fundus appearance typical of vitelliform macular dystrophy and a decreased Arden ratio (1.2/1.2). CONCLUSION Patients with the same heterozygous BEST1 mutations exhibited varying phenotypes. Our results have expanded the BEST1 mutation spectrum in a Chinese population with vitelliform macular dystrophy.
Collapse
|
4
|
Chen X, Jiang C, Sun R, Yang D, Liu Q. Circular Noncoding RNA NR3C1 Acts as a miR-382-5p Sponge to Protect RPE Functions via Regulating PTEN/AKT/mTOR Signaling Pathway. Mol Ther 2020; 28:929-945. [PMID: 32017889 DOI: 10.1016/j.ymthe.2020.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/22/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a universal leading cause for irreversible blindness in the elderly population. Dedifferentiation of retinal pigment epithelium (RPE) cells initiates early pathological events in atrophic AMD. Herein, we aim to investigate effects of a circular RNA derived from the NR3C1 gene (circNR3C1) on regulating RPE function and AMD pathogenesis. circNR3C1 expression was consistently upregulated along with RPE differentiation and was downregulated in dysfunctional RPE and blood serum of AMD patients. Silencing of circNR3C1 reduced RPE characteristic transcripts and proteins, interrupted phagocytosis, accelerated intracellular reactive oxygen species (ROS) generation, and promoted RPE proliferation in vitro. circN3C1 silencing also decreased expressions of RPE characteristic markers and disturbed the ultrastructure of RPE in vivo, as shown by a thickened RPE with twisted basal infoldings and outer segments. Mechanistically, circNR3C1 acted as an endogenous microRNA-382-5p (miR-382-5p) sponge to sequester its activity, which increased phosphatase and tensin homolog on chromosome 10 (PTEN) expression and inhibited the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway. miR-382-5p overexpression and PTEN silencing mimicked effects of circNR3C1 silencing on RPE phenotypes in vivo and in vitro. In conclusion, circNR3C1 prevents AMD progression and protects RPE by directly sponging miR-382-5p to block its interaction with PTEN and subsequently blocks the AKT/mTOR pathway. Pharmacological circNR3C1 supplementations are promising therapeutic options for atrophic AMD.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Daidi Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Gerth-Kahlert C, Koller S, Hanson JVM, Baehr L, Tiwari A, Kivrak-Pfiffner F, Bahr A, Berger W. Genotype-Phenotype Analysis of a Novel Recessive and a Recurrent Dominant SNRNP200 Variant Causing Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:2822-2835. [PMID: 31260034 DOI: 10.1167/iovs.18-25643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare phenotype variability in retinitis pigmentosa patients with recessive and dominant mutations in the SNRNP200 gene. Methods In a retrospective study, patients of two unrelated families were identified: family A, five patients aged 36 to 77 years; family B, one patient aged 9 years and his asymptomatic parents and sister. All patients received a comprehensive eye examination with a detailed retinal functional and morphologic assessment. Genetic testing was performed by whole exome sequencing (WES) in the index patient from each family. Genes described to be involved in eye diseases (n > 450) were screened for rare variants and segregation analysis was performed. Results A known heterozygous missense variant (c.3260C>T, p.(Ser1087Leu)) in the SNRNP200 gene was identified in the index patient of family A while a novel homozygous missense mutation (c.1634G>A, p.(Arg545His)) was found in the index patient of family B. Nyctalopia and photophobia were reported by 6/6 and 2/6 patients, respectively. The phenotype associated with the dominant mutation was characterized by variable disease onset (early childhood to the sixth decade of life), disease severity (visual acuity of 20/20-20/200 in the seventh to eighth decade), and advanced rod-cone dysfunction. Characteristics of recessive disease included distinct fundus changes of dot-like hypopigmentation together with retinal atrophy and severe rod-cone dysfunction. Conclusions The phenotype characteristics in autosomal dominant and recessive SNRNP200 mutations show distinct features, with earlier severe disease in the recessive case and a variable disease expression in the dominant inheritance pattern.
Collapse
Affiliation(s)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - James V M Hanson
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Luzy Baehr
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Amit Tiwari
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Fatma Kivrak-Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Angela Bahr
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chen X, Wang X, Jiang C, Xu M, Liu Y, Qi R, Qi X, Sun X, Xie P, Liu Q, Yan B, Sheng X, Zhao C. IFT52 as a Novel Candidate for Ciliopathies Involving Retinal Degeneration. Invest Ophthalmol Vis Sci 2019; 59:4581-4589. [PMID: 30242358 DOI: 10.1167/iovs.17-23351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the intraflagellar transport protein 52 homolog (IFT52) gene are reported to interrupt ciliary function and cause short-rib thoracic dysplasia (SRTD), a specific form of skeletal ciliopathy. However, the roles of these mutations in retinal ciliopathy are inexplicit. We herein aim to study the impact of IFT52 mutations in retinopathies. Methods A patient with syndromic ciliopathy, presenting mild SRTD (skeletal ciliopathy) and Liber congenital amaurosis (LCA; retinal ciliopathy), and nine unaffected family members were recruited. Comprehensive systemic evaluations, including ophthalmic tests, were received by the patient. Whole genome sequencing (WGS) was applied for genetic annotation. An in vitro cell system was employed to study the pathogenicity of the variant. Results WGS identified a homozygous missense variation in IFT52, c.556A>G (p.T186A), carried by the patient but absent in both unaffected siblings. In silico analysis supported the pathogenic nature of this highly conserved variant. Structural analysis suggested that this substitution could generate a novel hydrogen bond between the mutated residue 186 and proline at residue 192, thus potentially interrupting the tertiary structure and the stability of the IFT52 protein. In vitro cellular study indicated that this mutation might disturb the stability of encoded IFT52 protein and dramatically disrupt cilia elongation in hTERT-RPE1 cells in a loss-of-function manner. Conclusions This report expands ocular phenotypes of IFT52 mutation-caused ciliopathy to include retinal ciliopathy and demonstrates its deleterious nature in interrupting primary ciliary function. Our study hence highlights the need for screening for IFT52 mutations in LCA patients and ophthalmic reviews of patients carrying IFT52 mutations.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaoguang Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Min Xu
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yang Liu
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Rui Qi
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaolong Qi
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
7
|
Chen X, Sheng X, Liu Y, Li Z, Sun X, Jiang C, Qi R, Yuan S, Wang X, Zhou G, Zhen Y, Xie P, Liu Q, Yan B, Zhao C. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: a demonstration of the importance of genetic annotations in complicated pedigrees. J Transl Med 2018; 16:145. [PMID: 29843741 PMCID: PMC5975579 DOI: 10.1186/s12967-018-1522-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). Methods Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. Results All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. Conclusions Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yani Liu
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Zili Li
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Chao Jiang
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Qi
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Shiqin Yuan
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xuhui Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ge Zhou
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yanyan Zhen
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ping Xie
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Chen Zhao
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China. .,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
8
|
Qi YH, Gao FJ, Hu FY, Zhang SH, Chen JY, Huang WJ, Tian GH, Wang M, Gan DK, Wu JH, Xu GZ. Next-Generation Sequencing-Aided Rapid Molecular Diagnosis of Occult Macular Dystrophy in a Chinese Family. Front Genet 2017; 8:107. [PMID: 28890726 PMCID: PMC5574873 DOI: 10.3389/fgene.2017.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022] Open
Abstract
Purpose: To show early, rapid and accurate molecular diagnosis of occult macular dystrophy (OMD) in a four-generation Chinese family with inherited macular dystrophy. Methods: In the current study, we comprehensively screened 130 genes involved in common inherited non-syndromic eye diseases with next-generation sequencing-based target capture sequencing of the proband of a four-generation Chinese family that has suffered from maculopathy without a definitive diagnosis for over 10 years. Variants were filtered and analyzed to identify possible disease-causing variants before validation by Sanger sequencing. Results: Two heterozygous mutations—RP1L1 c.133 C > T (p.Arg45Trp), which is a hot spot for OMD, and ABCA4 c.6119 G > A (p.Arg2040Gln), which was identified in Stargardt’s disease were found in three patients, but neither of the mutations was found in the unaffected individuals in the same family, who are phenotypically normal or in the normal control volunteers. Conclusion: These results cannot only confirm the diagnosis of OMD in the proband, but also provide presymptomatic diagnosis of the proband’s children before the onset of visual acuity impairment and guidance regarding the prognosis and management of these patients. Heterozygous mutations of RP1L1 c.133 C > T (p.Arg45Trp) and ABCA4 c.6119 G > A (p.Arg2040Gln) are likely responsible for OMD. Our results further extend our current understanding of the genetic basis of OMD, and emphasize the importance of molecular diagnosis and genetic counseling for OMD.
Collapse
Affiliation(s)
- Yu-He Qi
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai MunicipalityShanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Jun-Yi Chen
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Wan-Jing Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Guo-Hong Tian
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - De-Kang Gan
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai MunicipalityShanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai MunicipalityShanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| |
Collapse
|
9
|
GUCA1A mutation causes maculopathy in a five-generation family with a wide spectrum of severity. Genet Med 2017; 19:945-954. [PMID: 28125083 PMCID: PMC5548935 DOI: 10.1038/gim.2016.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the genetic basis and pathogenic mechanism of variable maculopathies, ranging from mild photoreceptor degeneration to central areolar choroidal dystrophy, in a five-generation family. METHODS Clinical characterizations, whole-exome sequencing, and genome-wide linkage analysis were carried out on the family. Zebrafish models were used to investigate the pathogenesis of GUCA1A mutations. RESULTS A novel mutation, GUCA1A p.R120L, was identified in the family and predicted to alter the tertiary structure of guanylyl cyclase-activating protein 1, a photoreceptor-expressed protein encoded by the GUCA1A gene. The mutation was shown in zebrafish to cause significant disruptions in photoreceptors and retinal pigment epithelium, together with atrophies of retinal vessels and choriocapillaris. Those phenotypes could not be fully rescued by exogenous wild-type GUCA1A, suggesting a likely gain-of-function mechanism for p.R120L. GUCA1A p.D100E, another mutation previously implicated in cone dystrophy, also impaired the retinal pigment epithelium and photoreceptors in zebrafish, but probably via a dominant negative effect. CONCLUSION We conclude that GUCA1A mutations could cause significant variability in maculopathies, including central areolar choroidal dystrophy, which represents a severe pattern of maculopathy. The diverse pathogenic modes of GUCA1A mutations may explain the phenotypic diversities.Genet Med advance online publication 26 January 2017.
Collapse
|
10
|
Ezquerra-Inchausti M, Barandika O, Anasagasti A, Irigoyen C, López de Munain A, Ruiz-Ederra J. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa. Sci Rep 2017; 7:39652. [PMID: 28045043 PMCID: PMC5206707 DOI: 10.1038/srep39652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/24/2016] [Indexed: 01/24/2023] Open
Abstract
Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes.
Collapse
Affiliation(s)
| | - Olatz Barandika
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ander Anasagasti
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Cristina Irigoyen
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Ophthalmology, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Neurology, Donostia University Hospital, San Sebastián, Spain.,CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, Spain
| | - Javier Ruiz-Ederra
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| |
Collapse
|
11
|
Li ZL, Chen X, Zhuang WJ, Zhao W, Liu YN, Zhang FX, Ha RS, Wu JH, Zhao C, Sheng XL. FGFR2 mutation in a Chinese family with unusual Crouzon syndrome. Int J Ophthalmol 2016; 9:1403-1408. [PMID: 27803855 DOI: 10.18240/ijo.2016.10.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To describe the clinical characteristics with genetic lesions in a Chinese family with Crouzon syndrome. METHODS All five patients from this family were included and received comprehensive ophthalmic and systemic examinations. Direct sequencing of the FGFR2 gene was employed for mutation identification. Crystal structure analysis was applied to analyze the structural changes associated with the substitution. RESULTS All patients presented typical Crouzon features, including short stature, craniosynostosis, mandibular prognathism, shallow orbits with proptosis, and exotropia. Intrafamilial phenotypic diversities were observed. Atrophic optic nerves were exclusively detected in the proband and her son. Cranial magnetic resonance imaging (MRI) implied a cystic lesion in her sellar and third ventricular regions. A missense mutation, FGFR2 p.Cys342Trp, was found as disease causative. This substitution would generate conformational changes in the extracellular Ig-III domain of the FGFR-2 protein, thus altering its physical and biological properties. CONCLUSION We describe the clinical presentations and genotypic lesions in a Chinese family with Crouzon syndrome. The intrafamilial phenotypic varieties in this family suggest that other genetic modifiers may also play a role in the pathogenesis of Crouzon syndrome.
Collapse
Affiliation(s)
- Zi-Li Li
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Xue Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Wei Zhao
- Central Laboratory of Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Ya-Ni Liu
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Fang-Xia Zhang
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Ruo-Shui Ha
- Department of Radiology, People Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Jin-Hua Wu
- Department of Radiology, People Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Chen Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xun-Lun Sheng
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
12
|
Tremblay N, Baril M, Chatel-Chaix L, Es-Saad S, Park AY, Koenekoop RK, Lamarre D. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response. PLoS Pathog 2016; 12:e1005772. [PMID: 27454487 PMCID: PMC4959778 DOI: 10.1371/journal.ppat.1005772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33). Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1) to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV). This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response. The innate immune system is the first line of defense against pathogens and relies on the recognition of molecular structures specific to pathogens by sensor receptors. These receptors activate a signaling cascade and induce a protective cellular innate immune response. In this study, we provide evidence for a role of the spliceosomal SNRNP200 RNA helicase in promoting antiviral response that is clearly distinguishable of the one in pre-mRNA splicing. The depletion of SNRNP200 in human cells resulted in a reduced interferon-β (IFNB1) production and increased susceptibility to viral infection. We showed that SNRNP200 positively regulates activation of the key transcription factor IRF3 via interaction with TANK kinase 1 (TBK1). Upon infection, SNRNP200 binds viral RNA and relocalizes into TBK1-containing cytoplasmic structures to promote IRF3 activation and IFNB1 production. Of clinical relevance, we observed a significantly hindered antiviral response of PBMCs from patients carrying a dominant SNRNP200 mutation associated with retina pigmentosa type 33 (RP33), an inherited degenerative eye disease. We showed that the RP33-associated S1087L SNRNP200 mutant has lost the ability to bind RNA and that its expression fails to rescue antiviral response in SNRNP200 silenced cells. Our study provides new insights into a role within the antiviral response for spliceosome SNRNP200 helicase as an RNA sensor and TBK1 adaptor in IRF3 signaling.
Collapse
Affiliation(s)
- Nicolas Tremblay
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Martin Baril
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | | | - Salwa Es-Saad
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Alex Young Park
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Robert K. Koenekoop
- Departments of Pediatric Surgery, Human Genetics and Ophthalmology, McGill University, Montréal, Canada
| | - Daniel Lamarre
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
13
|
Huang L, Xiao X, Li S, Jia X, Wang P, Sun W, Xu Y, Xin W, Guo X, Zhang Q. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Exp Eye Res 2016; 146:252-258. [DOI: 10.1016/j.exer.2016.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/27/2015] [Accepted: 03/14/2016] [Indexed: 01/17/2023]
|
14
|
Ledoux S, Guthrie C. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. J Biol Chem 2016; 291:11954-65. [PMID: 27072132 DOI: 10.1074/jbc.m115.710848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices.
Collapse
Affiliation(s)
- Sarah Ledoux
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Christine Guthrie
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
15
|
Deml B, Reis LM, Muheisen S, Bick D, Semina EV. EFTUD2 deficiency in vertebrates: Identification of a novel human mutation and generation of a zebrafish model. ACTA ACUST UNITED AC 2015; 103:630-40. [PMID: 26118977 DOI: 10.1002/bdra.23397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Congenital microphthalmia and coloboma are severe developmental defects that are frequently associated with additional systemic anomalies and display a high level of genetic heterogeneity. METHODS To identify the pathogenic variant in a patient with microphthalmia, coloboma, retinal dystrophy, microcephaly, and other features, whole exome sequencing analysis of the patient and parental samples was undertaken. To further explore the identified variant/gene, expression and functional studies in zebrafish were performed. RESULTS Whole exome sequencing revealed a de novo variant, c.473_474delGA, p.(Arg158Lysfs*4), in EFTUD2 which encodes a component of the spliceosome complex. Dominant mutations in EFTUD2 cause Mandibulofacial Dysostosis, Guion-Almeida type, which does not involve microphthalmia, coloboma, or retinal dystrophy; analysis of genes known to cause these ocular phenotypes identified several variants of unknown significance but no causal alleles in the affected patient. Zebrafish eftud2 demonstrated high sequence conservation with the human gene and broad embryonic expression. TALEN-mediated disruption was employed to generate a c.378_385 del, p.(Ser127Aspfs*23) truncation mutation in eftud2. Homozygous mutants displayed a reduced head size, small eye, curved body, and early embryonic lethality. Apoptosis assays demonstrated a striking increase in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells in the developing brain, eye, spinal cord, and other tissues starting at 30 hours postfertilization. CONCLUSION This study reports a novel mutation in EFTUD2 in a Mandibulofacial Dysostosis, Guion-Almeida type patient with unusual ocular features and the generation of a first animal model of eftud2 deficiency. The severe embryonic phenotype observed in eftud2 mutants indicates an important conserved role during development of diverse tissues in vertebrates.
Collapse
Affiliation(s)
- Brett Deml
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Sanaa Muheisen
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - David Bick
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Sheng X, Chen X, Lei B, Chen R, Wang H, Zhang F, Rong W, Ha R, Liu Y, Zhao F, Yang P, Zhao C. Whole exome sequencing confirms the clinical diagnosis of Marfan syndrome combined with X-linked hypophosphatemia. J Transl Med 2015; 13:179. [PMID: 26040324 PMCID: PMC4455986 DOI: 10.1186/s12967-015-0534-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
Background To determine the genetic lesions and to modify the clinical diagnosis for a Chinese family with significant intrafamilial phenotypic diversities and unusual presentations. Methods Three affected patients and the asymptomatic father were included and received comprehensive systemic examinations. Whole exome sequencing (WES) was performed for mutation detection. Structural modeling test was applied to analyze the potential structural changes caused by the missense substitution. Results The proband showed a wide spectrum of systemic anomalies, including bilateral ectopia lentis, atrial septal defect, ventricular septal defect, widening of tibial metaphysis with medial bowing, and dolichostenomelia in digits, while her mother and elder brother only demonstrated similar skeletal changes. A recurrent mutation, PHEX p.R291*, was found in all patients, while a de novo mutation, FBN1 p.C792F, was only detected in the proband. The FBN1 substitution was also predicted to cause significant conformational change in fibrillin-1 protein, thus changing its physical and biological properties. Conclusions Taken together, we finalized the diagnosis for this family as X-linked hypophosphatemia (XLH), and diagnosed this girl as Marfan syndrome combined with XLH, and congenital heart disease. Our study also emphasizes the importance of WES in assisting the clinical diagnosis for complicated cases when the original diagnoses are challenged. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0534-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China.
| | - Xue Chen
- State Key Laboratory of Reproductive Medicine, Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Bo Lei
- Chongqing Key Laboratory of Ophthalmology, Department of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Fangxia Zhang
- Department of Ophthalmology, Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China.
| | - Weining Rong
- Department of Ophthalmology, Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China.
| | - Ruoshui Ha
- Department of Radiology, Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China.
| | - Yani Liu
- Department of Ophthalmology, Ningxia Eye Hospital, Ningxia People's Hospital, Ningxia, China.
| | - Feng Zhao
- Department of Cardiology and Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China.
| | - Peizeng Yang
- Chongqing Key Laboratory of Ophthalmology, Department of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Knocking Down Snrnp200 Initiates Demorphogenesis of Rod Photoreceptors in Zebrafish. J Ophthalmol 2015; 2015:816329. [PMID: 26137319 PMCID: PMC4469172 DOI: 10.1155/2015/816329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose. The small nuclear ribonucleoprotein 200 kDa (SNRNP200) gene is a fundamental component for precursor message RNA (pre-mRNA) splicing and has been implicated in the etiology of autosomal dominant retinitis pigmentosa (adRP). This study aims to determine the consequences of knocking down Snrnp200 in zebrafish. Methods. Expression of the Snrnp200 transcript in zebrafish was determined via whole mount in situ hybridization. Morpholino oligonucleotide (MO) aiming to knock down the expression of Snrnp200 was injected into zebrafish embryos, followed by analyses of aberrant splicing and expression of the U4/U6-U5 tri-small nuclear ribonucleoproteins (snRNPs) components and retina-specific transcripts. Systemic changes and retinal phenotypes were further characterized by histological study and immunofluorescence staining. Results. Snrnp200 was ubiquitously expressed in zebrafish. Knocking down Snrnp200 in zebrafish triggered aberrant splicing of the cbln1 gene, upregulation of other U4/U6-U5 tri-snRNP components, and downregulation of a panel of retina-specific transcripts. Systemic defects were found correlated with knockdown of Snrnp200 in zebrafish. Only demorphogenesis of rod photoreceptors was detected in the initial stage, mimicking the disease characteristics of RP. Conclusions. We conclude that knocking down Snrnp200 in zebrafish could alter regular splicing and expression of a panel of genes, which may eventually trigger rod defects.
Collapse
|
18
|
Targeted next-generation sequencing reveals novel EYS mutations in Chinese families with autosomal recessive retinitis pigmentosa. Sci Rep 2015; 5:8927. [PMID: 25753737 PMCID: PMC4354143 DOI: 10.1038/srep08927] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/10/2015] [Indexed: 11/11/2022] Open
Abstract
EYS mutations demonstrate great genotypic and phenotypic varieties, and are one of the major causes for patients with autosomal recessive retinitis pigmentosa (ARRP). Here, we aim to determine the genetic lesions with phenotypic correlations in two Chinese families with ARRP. Medical histories and ophthalmic documentations were obtained from all participants from the two pedigrees. Targeted next-generation sequencing (NGS) on 189 genes was performed to screen for RP causative mutations in the two families. Two biallelic mutations in EYS, p.[R164*];[C2139Y] and p.[W2640*];[F2954S], were identified in the two families, respectively. EYS p.R164* and p.F2954S are novel alleles associated with RP, while p.C2139Y and p.W2640* are known mutations. Crystal structure modeling on the protein eyes shut homolog encoded by the EYS gene revealed abnormal hydrogen bonds generated by p.C2139Y and p.F2954S, which would likely affect the solubility and cause significant structural changes of the two mutated proteins. In conclusion, our study expands the genotypic spectrums for EYS mutations, and may provide novel insights into the relevant pathogenesis for RP. We also demonstrate targeted NGS approach as a valuable tool for genetic diagnosis.
Collapse
|
19
|
Chen X, Sheng X, Liu X, Li H, Liu Y, Rong W, Ha S, Liu W, Kang X, Zhao K, Zhao C. Targeted next-generation sequencing reveals novel USH2A mutations associated with diverse disease phenotypes: implications for clinical and molecular diagnosis. PLoS One 2014; 9:e105439. [PMID: 25133613 PMCID: PMC4136877 DOI: 10.1371/journal.pone.0105439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/20/2014] [Indexed: 12/15/2022] Open
Abstract
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Xunlun Sheng
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Xiaoxing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Huiping Li
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Yani Liu
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Weining Rong
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Shaoping Ha
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Wenzhou Liu
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Xiaoli Kang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kanxing Zhao
- Tianjin Medical University, Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou, China
| |
Collapse
|
20
|
Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2. PLoS One 2014; 9:e97808. [PMID: 24831256 PMCID: PMC4022727 DOI: 10.1371/journal.pone.0097808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.
Collapse
|
21
|
Chen X, Liu Y, Sheng X, Tam POS, Zhao K, Chen X, Rong W, Liu Y, Liu X, Pan X, Chen LJ, Zhao Q, Vollrath D, Pang CP, Zhao C. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet 2014; 23:2926-39. [PMID: 24419317 DOI: 10.1093/hmg/ddu005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa (RP), a disease characterized by progressive loss of photoreceptors, exhibits significant genetic heterogeneity. Several genes associated with U4/U6-U5 triple small nuclear ribonucleoprotein (tri-snRNP) complex of the spliceosome have been implicated in autosomal dominant RP (adRP). HPrp4, encoded by PRPF4, regulates the stability of U4/U6 di-snRNP, which is essential for continuous splicing. Here, we identified two heterozygous variants in PRPF4, including c.-114_-97del in a simplex RP patient and c.C944T (p.Pro315Leu), which co-segregates with disease phenotype in a family with adRP. Both variants were absent in 400 unrelated controls. The c.-114_-97del, predicted to affect two transcription factor binding sites, was shown to down-regulate the promoter activity of PRPF4 by a luciferase assay, and was associated with a significant reduction of PRPF4 expression in the blood cells of the patient. In fibroblasts from an affected individual with the p.Pro315Leu variant, the expression levels of several tri-snRNP components, including PRPF4 itself, were up-regulated, with altered expression pattern of SC35, a spliceosome marker. The same alterations were also observed in cells over expressing hPrp4(Pro315Leu), suggesting that they arose as a compensatory response to a compromised splicing mechanism caused by hPrp4 dysfunction. Further, over expression of hPrp4(Pro315Leu), but not hPrp4(WT), triggered systemic deformities in wild-type zebrafish embryos with the retina primarily affected, and dramatically augmented death rates in morphant embryos, in which orthologous zebrafish prpf4 gene was silenced. We conclude that mutations of PRPF4 cause RP via haploinsufficiency and dominant-negative effects, and establish PRPF4 as a new U4/U6-U5 snRNP component associated with adRP.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Lai TYY, Chiang SWY, Tam POS, Liu DTL, Chan CKM, Pang CP, Zhao C, Chen LJ. Contribution of SNRNP200 sequence variations to retinitis pigmentosa. Eye (Lond) 2013; 27:1204-13. [PMID: 23887765 DOI: 10.1038/eye.2013.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/21/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Mutations in the SNRNP200 gene have been reported to cause autosomal dominant retinitis pigmentosa (adRP). In this study, we evaluate the mutation profile of SNRNP200 in a cohort of southern Chinese RP patients. METHODS Twenty adRP patients from 11 families and 165 index patients with non-syndromic RP with mixed inheritance patterns were screened for mutations in the mutation hotspots of SNRNP200. These included exons 12-16, 22-32, and 38-45, which covered the two helicase ATP-binding domains in DEAD-box and two sec-63 domains. The targeted regions were amplified by polymerase chain reaction and analyzed by direct DNA sequencing, followed by in silico analyses. RESULTS Totally 26 variants were identified, 18 of which were novel. Three non-synonymous variants (p.C502R, p.R1779H and p.I698V) were found exclusively in patients. Two of them, p.C502R and p.R1779H, were each identified in one simplex RP patient, whereas p.I698V occurred in one patient with unknown inheritance pattern. All three residues are highly conserved in SNRNP200 orthologs. Nevertheless, only p.C502R and p.R1779H were predicted to affect protein function by in silico analyses, suggesting these two variants are likely to be disease-causing mutations. Notably, all mutations previously identified in other study populations were not detected in this study. CONCLUSIONS Our results reveal a distinct mutation profile of the SNRNP200 gene in a southern Chinese cohort of RP patients. The identification of two novel candidate mutations in two respective patients affirmed that SNRNP200 contributes to a proportion of overall RP.
Collapse
Affiliation(s)
- X Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L, Tian G, Wang W. A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family. PLoS One 2012; 7:e45464. [PMID: 23029027 PMCID: PMC3446876 DOI: 10.1371/journal.pone.0045464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
The SNRNP200 gene encodes hBrr2, a helicase essential for pre-mRNA splicing. Six mutations in SNRNP200 have recently been discovered to be associated with autosomal dominant retinitis pigmentosa (adRP). In this work, we analyzed a Chinese family with adRP and identified a novel missense mutation in SNRNP200. To identify the genetic defect in this family, exome of the proband was captured and sequencing analysis was performed to exclude known genetic defects and find possible pathogenic mutations. Subsequently, candidate mutations were validated in affected family members using Sanger sequencing. A novel missense mutation, c.2653C>G transition (p.Q885E), in exon 20 of SNRNP200 was identified. The mutation co-segregated with the disease phenotype over four generations and was absent in 100 normal unaffected individuals. This mutation occurs at highly conserved position in hBrr2 and is predicted to have a functional impact, suggesting that hBrr2-dependent small nuclear riboproteins (snRNPs) unwinding and spliceosome activation is important in the pathogenesis of some variants of RP.
Collapse
Affiliation(s)
- Tiecheng Liu
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
- Department of Ophthalmology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Xin Jin
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Xuemin Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Huijun Yuan
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Janet Lee
- Department of Ophthalmology and Shiley Eye Center, University of California San Diego, La Jolla, California, United States of America
| | - Baoquan Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Maonian Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wu
- Department of Science and Technology, BGI-Tianjin, Tianjin, China
| | - Lijuan Wang
- Department of Reproductive Health, BGI-Shenzhen, Shenzhen, China
| | - Geng Tian
- Department of Science and Technology, BGI-Tianjin, Tianjin, China
| | - Weifeng Wang
- Department of Gastroenterology and Hepatology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| |
Collapse
|
24
|
Yuan Y, Zhou X, Wang F, Yan M, Ding F. Evidence for a novel autosomal dominant retinitis pigmentosa linked to chromosome 1p22.1-q12 in a Chinese family. Curr Eye Res 2011; 36:154-67. [PMID: 21281067 DOI: 10.3109/02713683.2010.511393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify the causative genetic locus in a Chinese autosomal dominant retinitis pigmentosa (adRP) family that contained seven affected members in three generations. METHODS After clinical diagnosis and exclusion of all mapped genes and loci, the SLINK program was used to simulate the maximum logarithm of the likelihood ratio (LOD) score for a linkage study in this small family. A genome-wide scan was performed using microsatellite markers at 10 cM intervals. Two-point and multipoint LOD scores were calculated, and haplotypes were constructed. RESULTS The H11 family clinical presentation included an early onset of night blindness, a progressive loss of the peripheral visual field, typical retinitis pigmentosa (RP) fundus changes, and a cataract complication. A maximum two-point LOD score of 2.54 (θ = 0) was found at markers D1S2739, D1S457, D1S187, D1S189, and D1S305, and multipoint linkage analysis yielded a maximum LOD score of 2.54 for marker D1S187. These LOD scores were the closest to the maximum simulated LOD score. Haplotype analysis revealed that this form of adRP segregates with a 38.25 cM region that spanned 50 Mb on chromosome 1p22.1-q12. CONCLUSIONS Although this locus overlaps the RP19 locus caused by mutations in ABCA4 and the RP32 locus, both are inherited in an autosomal recessive mode rather than the autosomal dominant mode of inheritance found in the H11 family. The identification of this potential new locus for adRP further confirms the high level of heterogeneity for RP.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
25
|
Shumei L, Xiaoting L, Xiangyun Z, Liqun H, Liang X, Sisi L. Mutation Frequency of IMPDH1 Gene of Han Population in Ganzhou City. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:293-7. [DOI: 10.1007/978-1-4419-1399-9_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, Zhao K, Staley JP, Larsson C. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 2009; 85:617-27. [PMID: 19878916 DOI: 10.1016/j.ajhg.2009.09.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/19/2009] [Accepted: 09/30/2009] [Indexed: 01/20/2023] Open
Abstract
Mutations in genes associated with the U4/U6-U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome are implicated in autosomal-dominant retinitis pigmentosa (adRP), a group of progressive retinal degenerative disorders leading to visual impairment, loss of visual field, and even blindness. We recently assigned a locus (RP33) for adRP to 2cen-q12.1, a region that harbors the SNRNP200 gene encoding hBrr2, another U4/U6-U5 snRNP component that is required for unwinding of U4/U6 snRNAs during spliceosome activation and for disassembly of the spliceosome. Here, we report the identification of a missense mutation, c.3260C>T (p.S1087L), in exon 25 of the SNRNP200 gene in an RP33-linked family. The c.3260C>T substitution showed complete cosegregation with the retinitis pigmentosa (RP) phenotype over four generations, but was absent in a panel of 400 controls. The p.S1087L mutation and p.R1090L, another adRP-associated allele, reside in the "ratchet" helix of the first of two Sec63 domains implicated in the directionality and processivity of nucleic acid unwinding. Indeed, marked defects in U4/U6 unwinding, but not U4/U6-U5 snRNP assembly, were observed in budding yeast for the analogous mutations (N1104L and R1107L) of the corresponding Brr2p residues. The linkage of hBrr2 to adRP suggests that the mechanism of pathogenesis for splicing-factor-related RP may fundamentally derive from a defect in hBrr2-dependent RNA unwinding and a consequent defect in spliceosome activation.
Collapse
|
27
|
Li N, Mei H, MacDonald IM, Jiao X, Hejtmancik JF. Mutations in ASCC3L1 on 2q11.2 are associated with autosomal dominant retinitis pigmentosa in a Chinese family. Invest Ophthalmol Vis Sci 2009; 51:1036-43. [PMID: 19710410 DOI: 10.1167/iovs.09-3725] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To localize and identify the gene and mutations causing autosomal dominant retinitis pigmentosa in a Chinese Family. METHODS Families were ascertained and patients underwent complete ophthalmic examinations. Blood samples were collected and DNA was extracted. A linkage scan of genomic regions containing known candidate genes was performed by using 34 polymorphic microsatellite markers on genomic DNA from affected and unaffected family members, and lod scores were calculated. Candidate genes were sequenced and mutations analyzed. RESULTS A genome-wide scan yielded a lod score of 3.5 at theta = 0 for D2S2333 and 3.46 at theta = 0 for D2S2216. This region harbors the ASCC3L1 gene. Sequencing of ASCC3L1 in an affected family member showed a heterozygous single-base-pair change; c.3269G-->T, predicted to result in an Arg1090Leu amino acid change. CONCLUSIONS The results provide strong evidence that mutations in ASCC3L1 have resulted in autosomal dominant retinitis pigmentosa in this Chinese family.
Collapse
|
28
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
29
|
Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. ARCHIVES OF OPHTHALMOLOGY (CHICAGO, ILL. : 1960) 2007; 125:151-8. [PMID: 17296890 PMCID: PMC2580741 DOI: 10.1001/archopht.125.2.151] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exceptional progress has been made during the past two decades in identifying genes causing inherited retinal diseases such as retinitis pigmentosa. An inescapable consequence is that the relationship between genes, mutations, and clinical findings has become very complex. Success in identifying the causes of inherited retinal diseases has many implications, including a better understanding of the biological basis of vision and insights into the processes involved in retinal pathology. From a clinical point of view, there are two important questions arising from these developments: where do we stand today in finding disease-causing mutations in affected individuals, and what are the implications of this information for clinical practice? This perspective addresses these questions specifically for retinitis pigmentosa, but the observations apply generally to other forms of inherited eye disease.
Collapse
Affiliation(s)
- Stephen P Daiger
- Department of Ophthalmology and Visual Science, School of Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|