1
|
Collins MA, Avery R, Albert FW. Substrate-specific effects of natural genetic variation on proteasome activity. PLoS Genet 2023; 19:e1010734. [PMID: 37126494 PMCID: PMC10174532 DOI: 10.1371/journal.pgen.1010734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/11/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Protein degradation is an essential biological process that regulates protein abundance and removes misfolded and damaged proteins from cells. In eukaryotes, most protein degradation occurs through the stepwise actions of two functionally distinct entities, the ubiquitin system and the proteasome. Ubiquitin system enzymes attach ubiquitin to cellular proteins, targeting them for degradation. The proteasome then selectively binds and degrades ubiquitinated substrate proteins. Genetic variation in ubiquitin system genes creates heritable differences in the degradation of their substrates. However, the challenges of measuring the degradative activity of the proteasome independently of the ubiquitin system in large samples have limited our understanding of genetic influences on the proteasome. Here, using the yeast Saccharomyces cerevisiae, we built and characterized reporters that provide high-throughput, ubiquitin system-independent measurements of proteasome activity. Using single-cell measurements of proteasome activity from millions of genetically diverse yeast cells, we mapped 15 loci across the genome that influence proteasomal protein degradation. Twelve of these 15 loci exerted specific effects on the degradation of two distinct proteasome substrates, revealing a high degree of substrate-specificity in the genetics of proteasome activity. Using CRISPR-Cas9-based allelic engineering, we resolved a locus to a causal variant in the promoter of RPT6, a gene that encodes a subunit of the proteasome's 19S regulatory particle. The variant increases RPT6 expression, which we show results in increased proteasome activity. Our results reveal the complex genetic architecture of proteasome activity and suggest that genetic influences on the proteasome may be an important source of variation in the many cellular and organismal traits shaped by protein degradation.
Collapse
Affiliation(s)
- Mahlon A. Collins
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randi Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank W. Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Yajie H, Shenglan W, Wei Z, Rufang L, Tingting Y, Yunhui Z, Jie S. Global quantitative proteomic analysis profiles of host protein expression in response to Enterovirus A71 infection in bronchial epithelial cells based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS uncovers the key role of proteasome in virus replication. Virus Res 2023; 330:199118. [PMID: 37072100 DOI: 10.1016/j.virusres.2023.199118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic human pathogen which mainly caused hand, foot and mouth disease (HFMD) mostly in children under 5 years-old. Generally, EV-A71-associated HFMD is a relatively self-limiting febrile disease, but there will still be a small percentage of patients with rapid disease progression and severe neurological complications. To date, the underlying mechanism of EV-A71 inducing pathological injury of central nervous system (CNS) remains largely unclear. It has been investigated and discussed the changes of mRNA, miRNA and circRNA expression profile during infection by EV-A71 in our previous studies. However, these studies were only analyzed at the RNA level, not at the protein level. It's the protein levels that ultimately do the work in the body. Here, to address this, we performed a tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS approach to quantitatively identify cellular proteome changes at 24 h post-infection (hpi) in EV-A71-infected 16HBE cells. In total, 6615 proteins were identified by using TMT coupled with LC-MS/MS in this study. In the EV-A71- and mock-infected groups, 210 differentially expressed proteins were found, including 86 upregulated and 124 downregulated proteins, at 24 hpi. To ensure the validity and reliability of the proteomics data, 3 randomly selected proteins were verified by Western blot and Immunofluorescence analysis, and the results were consistent with the TMT results. Subsequently, functional enrichment analysis indicated that the up-regulated and down-regulated proteins were individually involved in various biological processes and signaling pathways, including metabolic process, AMPK signaling pathway, Neurotrophin signaling pathway, Viral myocarditis, GABAergic synapse, and so on. Moreover, among these enriched functional analysis, the "Proteasome" pathway was up-regulated, which has caught our attention. Inhibition of proteasome was found to obviously suppress the EV-A71 replication. Finally, further in-depth analysis revealed that these differentially expressed proteins contained distinct domains and localized in different subcellular components. Taken together, our data provided a comprehensive view of host cell response to EV-A71 and identified host proteins may lead to better understanding of the pathogenic mechanisms and host responses to EV-A71 infection, and also to the identification of new therapeutic targets for EV-A71 infection.
Collapse
Affiliation(s)
- Hu Yajie
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.; Yunnan Provincial Key Laboratory of Clinical Virology
| | - Wang Shenglan
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Rufang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Tingting
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Yunhui
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China..
| | - Song Jie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
3
|
Xu Y, Ye L, Geng R, Hu P, Sun Q, Tong S, Yuan F, Chen Q. Development and Verification of the Amino Metabolism-Related and Immune-Associated Prognosis Signature in Gliomas. Front Oncol 2021; 11:774332. [PMID: 34804978 PMCID: PMC8602207 DOI: 10.3389/fonc.2021.774332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Aberrant reprogramming of metabolism has been considered a hallmark in various malignant tumors. The metabolic changes of amino acid not only have dramatic effects in cancer cells but also influence their immune-microenvironment in gliomas. However, the features of the amino acid metabolism-related and immune-associated gene set have not been systematically described. The expression level of mRNA was obtained from The Cancer Genome Atlas database and the Chinese Glioma Genome Atlas database, which were used as training set and validation set, respectively. Different bioinformatics and statistical methods were combined to construct a robust amino metabolism-related and immune-associated risk signature for distinguishing prognosis and clinical pathology features. Constructing the nomogram enhanced risk stratification and quantified risk assessment based on our gene model. Besides this, the biological mechanism related to the risk score was investigated by gene set enrichment analysis. Hub genes of risk signature were identified by the protein–protein interaction network. The amino acid metabolism-related and immune-associated gene signature recognized high-risk patients, defined as an independent risk factor for overall survival. The nomogram exhibited a high accuracy in predicting the overall survival rate for glioma patients. Furthermore, the high risk score hinted an immunosuppressive microenvironment and a lower sensitivity of immune checkpoint blockade therapy and also identified PSMC5 and PSMD3 as novel biomarkers in glioma. In conclusion, a novel amino acid metabolism-related and immune-associated risk signature for predicting prognosis in glioma has been constructed and identified as two potential novel biomarkers.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, Park Y, Consortium GTE, Wen X, Im HK. PhenomeXcan: Mapping the genome to the phenome through the transcriptome. SCIENCE ADVANCES 2020; 6:eaba2083. [PMID: 32917697 PMCID: PMC11206444 DOI: 10.1126/sciadv.aba2083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Large-scale genomic and transcriptomic initiatives offer unprecedented insight into complex traits, but clinical translation remains limited by variant-level associations without biological context and lack of analytic resources. Our resource, PhenomeXcan, synthesizes 8.87 million variants from genome-wide association study summary statistics on 4091 traits with transcriptomic data from 49 tissues in Genotype-Tissue Expression v8 into a gene-based, queryable platform including 22,515 genes. We developed a novel Bayesian colocalization method, fast enrichment estimation aided colocalization analysis (fastENLOC), to prioritize likely causal gene-trait associations. We successfully replicate associations from the phenome-wide association studies (PheWAS) catalog Online Mendelian Inheritance in Man, and an evidence-based curated gene list. Using PhenomeXcan results, we provide examples of novel and underreported genome-to-phenome associations, complex gene-trait clusters, shared causal genes between common and rare diseases via further integration of PhenomeXcan with ClinVar, and potential therapeutic targets. PhenomeXcan (phenomexcan.org) provides broad, user-friendly access to complex data for translational researchers.
Collapse
Affiliation(s)
- Milton Pividori
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Padma S Rajagopal
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Alvaro Barbeira
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yanyu Liang
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Owen Melia
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Hae K Im
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
ALG-2 couples T cell activation and apoptosis by regulating proteasome activity and influencing MCL1 stability. Cell Death Dis 2020; 11:5. [PMID: 31919392 PMCID: PMC6952393 DOI: 10.1038/s41419-019-2199-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023]
Abstract
T cell homeostasis is critical for the proper function of the immune system. Following the sharp expansion upon pathogen infection, most T cells die in order to keep balance in the immune system, a process which is controlled by death receptors during the early phase and Bcl-2 proteins in the later phase. It is still highly debated whether the apoptosis of T cells is determined from the beginning, upon activation, or determined later during the contraction. MCL1, a Bcl-2 family member, plays a pivotal role in T cell survival. As a fast turnover protein, MCL1 levels are tightly regulated by the 26S proteasome-controlled protein degradation process. In searching for regulatory factors involved in the actions of MCL1 during T cell apoptosis, we found that ALG-2 was critical for MCL1 stability, a process mediated by a direct interaction between ALG-2 and Rpn3, a key component of the 26S proteasome. As a critical calcium sensor, ALG-2 regulated the activity of the 26S proteasome upon increases to cytosolic calcium levels following T cell activation, this consequently influenced the stability of MCL1 and accelerated the T cell “death” process, leading to T cell contraction and restoration of immune homeostasis. Our study provides support for the notion that T cells are destined for apoptosis after activation, and echoes the previous study about the function of ALG-2 in T cell death.
Collapse
|
6
|
Fararjeh AS, Chen LC, Ho YS, Cheng TC, Liu YR, Chang HL, Chang HW, Wu CH, Tu SH. Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast Cancer by Stabilizing HER2 from Degradation. Cancers (Basel) 2019; 11:cancers11040527. [PMID: 31013812 PMCID: PMC6549480 DOI: 10.3390/cancers11040527] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
It is well-known that human epidermal growth factor receptor 2 (HER2) is critical for breast cancer (BC) development and progression. Several studies have revealed the role of the ubiquitin/proteasome system (UPS) in cancer. In this study, we investigated the expression level of Proteasome 26S subunit, non-ATPase 3 (PSMD3) in BC using BC cell lines, human BC tissue samples, Oncomine, and TCGA databases and studied the PSMD3-HER2 protein interaction. PSMD3 was upregulated in BC, particularly in the HER2+ subtype. PSMD3 immunostaining was detected in the cytoplasm and nucleus of BC tumor tissues. Strong interaction between PSMD3 and HER2 at the protein level was observed. Knockdown of PSMD3 significantly impaired the stability of HER2, inhibited BC cell proliferation and colony formation, and induced cell apoptosis. Ubiquitination process was strongly enhanced after knockdown of PSMD3 in association with decreased HER2 level. Accumulation and Localization of LAMP-1 in the cell membrane with decreased HER2 immunostaining was observed after knockdown of PSMD3. High expression level of PSMD3 was associated with HER2 expression (p < 0.001), tumor size (p < 0.001), and clinical stage (p = 0.036). High expression level of PSMD3 predicted a short overall survival (OS), particularly for HER2+. Overall, we provide a novel function for PSMD3 in stabilizing HER2 from degradation in HER2+ BC, which suggests that PSMD3 is a novel target for HER2+ BC.
Collapse
Affiliation(s)
- Abdulfattah Salah Fararjeh
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Chun Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan.
| | - Hang-Lung Chang
- Department of Surgery, EnChu Kong Hospital, New Taipei City237, Taiwan.
| | - Hui-Wen Chang
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Chih-Hsiung Wu
- Department of Surgery, EnChu Kong Hospital, New Taipei City237, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
7
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Matsuura K, Tanaka Y. Host genetic variants influencing the clinical course of hepatitis C virus infection. J Med Virol 2016; 88:185-195. [PMID: 26211651 DOI: 10.1002/jmv.24334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022]
Abstract
The clinical course of hepatitis C virus (HCV) infection greatly differs in individuals. Various viral, host, and environmental factors influence the natural history of HCV infection. Recent genome-wide association studies identified several host genetic factors influencing treatment efficacy or clinical course in HCV infection. A landmark discovery was that IFNL3-IFNL4 variants are strongly associated with responses to interferon-based treatment. Genetic variants in IFNL3-IFNL4 as well as those in HLA class II loci influence the spontaneous clearance of acute HCV infection. Interestingly, these genetic variants also affect the activity of hepatitis, or disease progression in chronic hepatitis C. In addition, polymorphisms in apoptosis-related genes such as RNF7, TULP1, and MERTK are associated with fibrosis progression, and DEPDC5 and MICA variants are associated with HCV-related hepatocellular carcinoma. Understanding the genetic factors associated with the clinical course of HCV infection is essential for personalized treatment and surveillance of disease progression and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Transfusion Medicine, Clinical CenterInfectious Disease and Immunogenetics Section, National Institutes of Health, Bethesda, Maryland
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Chan SL, Jin S, Loh M, Brunham LR. Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics 2015; 16:1161-78. [DOI: 10.2217/pgs.15.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major goal of the field of pharmacogenomics is to identify the genomic causes of serious adverse drug reactions (ADRs). Increasingly, genome-wide association studies (GWAS) have been used to achieve this goal. In this article, we review recent progress in the identification of genetic variants associated with ADRs using GWAS and discuss emerging themes from these studies. We also compare aspects of GWAS for ADRs to GWAS for common diseases. In the second part of the article, we review progress in performing pharmacogenomic research in multi-ethnic populations and discuss the challenges and opportunities of investigating genetic causes of ADRs in ethnically diverse patient populations.
Collapse
Affiliation(s)
- Sze Ling Chan
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Shengnan Jin
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|