1
|
Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel frameshift insertion mutation in the EXT1 gene in a Chinese family with hereditary multiple exostoses. Clin Case Rep 2022; 10:e6298. [PMID: 36101782 PMCID: PMC9459098 DOI: 10.1002/ccr3.6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
To identify the pathogenic gene variation in a Chinese family with Hereditary Multiple Exostoses (HME). By examining blood-sourced DNA and clinical manifestations of the proband and his family members, the whole exome sequencing (WES) and Sanger sequencing were used to detect possibly pathogenic mutations. A novel heterozygous mutation (c.325dup) was identified in exon 1 of the exostosin 1 (EXT1) gene from the proband and the affected family members. And we found this mutation was absent in all the unaffected family members. This c.325dup mutation is in the exon 1 domain of the EXT1 gene and the change of p.C109Lfs*80 cause the early termination of protein translation. The identification of the novel frameshift insertion mutation (c.325dup) expands the mutation spectrum of HME, which provides new evidence for HME diagnosis.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xinwei Shi
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuqi Li
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Fuyuan Qiao
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Wu
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
3
|
Osia B, Alsulaiman T, Jackson T, Kramara J, Oliveira S, Malkova A. Cancer cells are highly susceptible to accumulation of templated insertions linked to MMBIR. Nucleic Acids Res 2021; 49:8714-8731. [PMID: 34379776 PMCID: PMC8421209 DOI: 10.1093/nar/gkab685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
Microhomology-mediated break-induced replication (MMBIR) is a DNA repair pathway initiated by polymerase template switching at microhomology, which can produce templated insertions that initiate chromosomal rearrangements leading to neurological and metabolic diseases, and promote complex genomic rearrangements (CGRs) found in cancer. Yet, how often templated insertions accumulate from processes like MMBIR in genomes is poorly understood due to difficulty in directly identifying these events by whole genome sequencing (WGS). Here, by using our newly developed MMBSearch software, we directly detect such templated insertions (MMB-TIs) in human genomes and report substantial differences in frequency and complexity of MMB-TI events between normal and cancer cells. Through analysis of 71 cancer genomes from The Cancer Genome Atlas (TCGA), we observed that MMB-TIs readily accumulate de novo across several cancer types, with particularly high accumulation in some breast and lung cancers. By contrast, MMB-TIs appear only as germline variants in normal human fibroblast cells, and do not accumulate as de novo somatic mutations. Finally, we performed WGS on a lung adenocarcinoma patient case and confirmed MMB-TI-initiated chromosome fusions that disrupted potential tumor suppressors and induced chromothripsis-like CGRs. Based on our findings we propose that MMB-TIs represent a trigger for widespread genomic instability and tumor evolution.
Collapse
Affiliation(s)
- Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Thamer Alsulaiman
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Tyler Jackson
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Suely Oliveira
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
4
|
Akimova E, Gassner FJ, Schubert M, Rebhandl S, Arzt C, Rauscher S, Tober V, Zaborsky N, Greil R, Geisberger R. SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Res 2021; 49:2598-2608. [PMID: 33591315 PMCID: PMC7969033 DOI: 10.1093/nar/gkab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Claudia Arzt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefanie Rauscher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Vanessa Tober
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Wang Y, Zhong L, Xu Y, Ding L, Ji Y, Schutz S, Férec C, Cooper DN, Xu C, Chen JM, Luo Y. EXT1 and EXT2 Variants in 22 Chinese Families With Multiple Osteochondromas: Seven New Variants and Potentiation of Preimplantation Genetic Testing and Prenatal Diagnosis. Front Genet 2020; 11:607838. [PMID: 33414810 PMCID: PMC7783290 DOI: 10.3389/fgene.2020.607838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple osteochondromas (MO), the most common type of benign bone tumor, is an autosomal dominant skeletal disorder characterized by multiple cartilage-capped bony protuberances. In most cases, EXT1 and EXT2, which encode glycosyltransferases involved in the biosynthesis of heparan sulfate, are the genes responsible. Here we describe the clinical, phenotypic and genetic characterization of MO in 22 unrelated Chinese families involving a total of 60 patients. Variant detection was performed by means of a battery of different techniques including Sanger sequencing and whole-exome sequencing (WES). The pathogenicity of the missense and splicing variants was explored by means of in silico prediction algorithms. Sixteen unique pathogenic variants, including 10 in the EXT1 gene and 6 in the EXT2 gene, were identified in 18 (82%) of the 22 families. Fourteen (88%) of the 16 variants were predicted to give rise to truncated proteins whereas the remaining two were missense. Seven variants were newly described here, further expanding the spectrum of MO-causing variants in the EXT1 and EXT2 genes. More importantly, the identification of causative variants allowed us to provide genetic counseling to 8 MO patients in terms either of preimplantation genetic testing (PGT) or prenatal diagnosis, thereby preventing the reoccurrence of MO in the corresponding families. This study is the first to report the successful implementation of PGT in MO families and describes the largest number of subjects undergoing prenatal diagnosis to date.
Collapse
Affiliation(s)
- Ye Wang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangying Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Lei Ding
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Ji
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sacha Schutz
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - Claude Férec
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - David N. Cooper
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Min Chen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Yanmin Luo
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Zhang R, Chen S, Han P, Chen F, Kuang S, Meng Z, Liu J, Sun R, Wang Z, He X, Li Y, Guan Y, Yue Z, Li C, Kumar Dey S, Zhu Y, Banerjee S. Whole exome sequencing identified a homozygous novel variant in CEP290 gene causes Meckel syndrome. J Cell Mol Med 2019; 24:1906-1916. [PMID: 31840411 PMCID: PMC6991682 DOI: 10.1111/jcmm.14887] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
Meckel syndrome (MKS) is a pre‐ or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo‐occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35‐years‐old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715*) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild‐type CEP290 protein of 290 KD. Hence, it is a loss‐of‐function variant. We also found that the mutant cilium appears longer in length than the wild‐type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Shaoyun Chen
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Peng Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Fangfang Chen
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Shan Kuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zhuo Meng
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Junnian Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Ruliang Sun
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Zhiwei Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaohong He
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Yong Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuanning Guan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Chen Li
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Kolkata, India.,Brainware University, Barasat, India
| | - Yuanfang Zhu
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Santasree Banerjee
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Brainware University, Barasat, India
| |
Collapse
|
7
|
Wang Y, Zhu C, Du L, Li Q, Lin MF, Férec C, Cooper DN, Chen JM, Zhou Y. Compound Heterozygosity for Novel Truncating Variants in the LMOD3 Gene as the Cause of Polyhydramnios in Two Successive Fetuses. Front Genet 2019; 10:835. [PMID: 31572445 PMCID: PMC6753228 DOI: 10.3389/fgene.2019.00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Polyhydramnios is sometimes associated with genetic defects. However, establishing an accurate diagnosis and pinpointing the precise genetic cause of polyhydramnios in any given case represents a major challenge because it is known to occur in association with over 200 different conditions. Whole exome sequencing (WES) is now a routine part of the clinical workup, particularly with diseases characterized by atypical manifestations and significant genetic heterogeneity. Here we describe the identification, by means of WES, of novel compound heterozygous truncating variants in the LMOD3 gene [i.e., c.1412delA (p.Lys471Serfs*18) and c.1283dupC (p.Gly429Trpfs*35)] in a Chinese family with two successive fetuses affected with polyhydramnios, thereby potentiating the prenatal diagnosis of nemaline myopathy (NM) in the proband. LMOD3 encodes leiomodin-3, which is localized to the pointed ends of thin filaments and acts as a catalyst of actin nucleation in skeletal and cardiac muscle. This is the first study to describe the prenatal and postnatal manifestations of LMOD3-related NM in the Chinese population. Of all the currently reported NM-causing LMOD3 nonsense and frameshifting variants, c.1412delA generates the shortest truncation at the C-terminal end of the protein, underscoring the critical role of the WH2 domain in LMOD3 structure and function. Survey of the prenatal phenotypes of all known LMOD3-related severe NM cases served to identify fetal edema as a novel presenting feature that may provide an early clue to facilitate prenatal diagnosis of the disease.
Collapse
Affiliation(s)
- Ye Wang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhu
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liu Du
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiaoer Li
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Yi Zhou
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X, Meng Q, Hu J, Doddapaneni H, Chong Z, Chen ES, Thornton PC, Liu P, Yuan B, Withers M, Jhangiani SN, Kalra D, Walker K, English AC, Han Y, Chen K, Muzny DM, Ira G, Shaw CA, Gibbs RA, Hastings PJ, Lupski JR. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 2019; 176:1310-1324.e10. [PMID: 30827684 PMCID: PMC6438178 DOI: 10.1016/j.cell.2019.01.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 01/16/2023]
Abstract
DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Xiaofei Song
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Zechen Chong
- Department of Genetics and the Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward S Chen
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Philip C Thornton
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Divya Kalra
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Adam C English
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy. Sci Rep 2018; 8:14989. [PMID: 30301903 PMCID: PMC6177444 DOI: 10.1038/s41598-018-33098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
Although recessive mutations in LAMA2 are already known to cause laminin α2-related muscular dystrophy, a rare neuromuscular disorder, large deletions or duplications within this gene are not well-characterized. In this study, we applied next-generation sequencing-based copy number variation profiling in 114 individuals clinically diagnosed with laminin α2-related muscular dystrophy, including 96 who harboured LAMA2 mutations and 34 who harboured intragenic rearrangements. In total, we detected 18 distinct LAMA2 copy number variations that have been reported only among Chinese, 10 of which are novel. The frequency of CNVs in the cohort was 19.3%. Deletion of exon 4 was detected in 10 alleles of eight patients, accounting for 27% of all copy number variations. These patients are Han Chinese and were found to have the same haplotype and sequence at the breakpoint junction, suggesting that exon 4 deletion is a founder mutation in Chinese Han and a mutation hotspot. Moreover, the data highlight our approach, a modified next-generation sequencing assay, as a robust and sensitive tool to detect LAMA2 variants; the assay identifies 85.7% of breakpoint junctions directly alongside sequence information. The method can be applied to clinical samples to determine causal variants underlying various Mendelian disorders.
Collapse
|
10
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|
11
|
Banerjee S, Chen H, Huang H, Wu J, Yang Z, Deng W, Chen D, Deng J, Su Y, Li Y, Wu C, Wang Y, Zeng H, Wang Y, Li X. Novel mutations c.28G>T (p.Ala10Ser) and c.189G>T (p.Glu63Asp) in WDR62 associated with early onset acanthosis and hyperkeratosis in a patient with autosomal recessive microcephaly type 2. Oncotarget 2018; 7:78363-78371. [PMID: 27852057 PMCID: PMC5346645 DOI: 10.18632/oncotarget.13279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
Microcephaly (MCPH) is a developmental disorder characterized by reduced brain size and intellectual disability. A proportion of microcephaly is caused by defects in a single gene. Microcephaly 2 (MCPH2) is one of the most frequent subtypes of MCPH.WD repeat-containing protein 62 gene (WDR62) is the most frequently mutated gene in MCPH2 patients. Phenotypes involving dermatological changes in MCPH2 have not been reported. We have identified and investigated a 5-year-old Chinese girl with markedly reduced brain size (86% of normal size), intellectual disability and psychomotor developmental delay. The patient also exhibited spattered blisters and reduced hair density on her head, anisochromasia with reticular hyperpigmentation and hypopigmentation on the trunk, which she has had since the age of 4 and had been found by her parents. Histological examination of a skin biopsy revealed acanthosis, hyperkeratosis and necrotic keratinocytes. Whole exome and Sanger sequencing identified two novel missense mutations, c.28G>T and c.189G>T, in the WDR62 gene. Both the mutations non-synonymously affect evolutionarily conserved amino acids and are predicted to be disease causing. We report the first case of MCPH2 that also presented with marked dermatological changes. Our findings expand the mutational and phenotypical spectra of MCPH2 and are valuable in the mutation-based pre- and post-natal screening and genetic diagnosis for MCPH2.
Collapse
Affiliation(s)
| | | | | | - Jing Wu
- BGI-Shenzhen, Shenzhen, China
| | - Zhiyun Yang
- Department of Medical Imaging, 1st affiliated hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weiping Deng
- Department of Dermatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, PR China
| | | | | | - Yan Su
- BGI-Shenzhen, Shenzhen, China
| | - Yang Li
- BGI-Shenzhen, Shenzhen, China
| | - Chao Wu
- Department of Neurology, 1st affiliated hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ye Wang
- Department of Medical Genetics, Center for Genome Research, Sun Yat-sen University, Guangzhou, PR China
| | - Hao Zeng
- Department of Medical Genetics, Center for Genome Research, Sun Yat-sen University, Guangzhou, PR China
| | - Yiming Wang
- Xinhua College, Sun Yat-sen university, Guangzhou, PR China.,BGI-Shenzhen, Shenzhen, China
| | - Xunhua Li
- Department of Neurology, 1st affiliated hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
12
|
Wang Y, Wu X, Du L, Zheng J, Deng S, Bi X, Chen Q, Xie H, Férec C, Cooper DN, Luo Y, Fang Q, Chen JM. Identification of compound heterozygous variants in the noncoding RNU4ATAC gene in a Chinese family with two successive foetuses with severe microcephaly. Hum Genomics 2018; 12:3. [PMID: 29370840 PMCID: PMC5784706 DOI: 10.1186/s40246-018-0135-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background Whole-exome sequencing (WES) over the last few years has been increasingly employed for clinical diagnosis. However, one caveat with its use is that it inevitably fails to detect disease-causative variants that occur within noncoding RNA genes. Our experience in identifying pathogenic variants in the noncoding RNU4ATAC gene, in a Chinese family where two successive foetuses had been affected by severe microcephaly, is a case in point. These foetuses exhibited remarkably similar phenotypes in terms of their microcephaly and brain abnormalities; however, the paucity of other characteristic phenotypic features had made a precise diagnosis impossible. Given that no external causative factors had been reported/identified during the pregnancies, we sought a genetic cause for the phenotype in the proband, the second affected foetus. Results A search for chromosomal abnormalities and pathogenic copy number variants proved negative. WES was also negative. These initial failures prompted us to consider the potential role of RNU4ATAC, a noncoding gene implicated in microcephalic osteodysplastic primordial dwarfism type-1 (MOPD1), a severe autosomal recessive disease characterised by dwarfism, severe microcephaly and neurological abnormalities. Subsequent targeted sequencing of RNU4ATAC resulted in the identification of compound heterozygous variants, one being the most frequently reported MOPD1-causative mutation (51G>A), whereas the other was a novel 29T>A variant. Four distinct lines of evidence (allele frequency in normal populations, evolutionary conservation of the affected nucleotide, occurrence within a known mutational hotspot for MOPD1-causative variants and predicted effect on RNA secondary structure) allowed us to conclude that 29T>A is a new causative variant for MOPD1. Conclusions Our findings highlight the limitations of WES in failing to detect variants within noncoding RNA genes and provide support for a role for whole-genome sequencing as a first-tier genetic test in paediatric medicine. Additionally, the identification of a novel RNU4ATAC variant within the mutational hotspot for MOPD1-causative variants further strengthens the critical role of the 5′ stem-loop structure of U4atac in health and disease. Finally, this analysis enabled us to provide prenatal diagnosis and genetic counselling for the mother’s third pregnancy, the first report of its kind in the context of inherited RNU4ATAC variants.
Collapse
Affiliation(s)
- Ye Wang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xueli Wu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Liu Du
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ju Zheng
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Songqing Deng
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Bi
- Guangzhou KingMed Center for Clinical Laboratory, Guangzhou, China
| | - Qiuyan Chen
- Dongguan Women and Children's Hospital, Dongguan, China
| | - Hongning Xie
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Claude Férec
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, EFS - Bretagne, Université de Brest, CHRU Brest, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yanmin Luo
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Qun Fang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jian-Min Chen
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, EFS - Bretagne, Université de Brest, CHRU Brest, Brest, France. .,INSERM UMR1078, EFS, UBO, 22 avenue Camille Desmoulins, 29238, Brest, France.
| |
Collapse
|
13
|
Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H. Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 2017; 38:1711-1722. [PMID: 28862369 DOI: 10.1002/humu.23319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/30/2023]
Abstract
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
14
|
Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:51-65. [PMID: 28927537 DOI: 10.1016/j.mrrev.2017.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina.
| |
Collapse
|
15
|
Sakofsky CJ, Malkova A. Break induced replication in eukaryotes: mechanisms, functions, and consequences. Crit Rev Biochem Mol Biol 2017; 52:395-413. [PMID: 28427283 DOI: 10.1080/10409238.2017.1314444] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Break-induced replication (BIR) is an important pathway specializing in repair of one-ended double-strand DNA breaks (DSBs). This type of DSB break typically arises at collapsed replication forks or at eroded telomeres. BIR initiates by invasion of a broken DNA end into a homologous template followed by initiation of DNA synthesis that can proceed for hundreds of kilobases. This synthesis is drastically different from S-phase replication in that instead of a replication fork, BIR proceeds via a migrating bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual mode of DNA replication is responsible for frequent genetic instabilities associated with BIR, including hyper-mutagenesis, which can lead to the formation of mutation clusters, extensive loss of heterozygosity, chromosomal translocations, copy-number variations and complex genomic rearrangements. In addition to budding yeast experimental systems that were initially employed to investigate eukaryotic BIR, recent studies in different organisms including humans, have provided multiple examples of BIR initiated within different cellular contexts, including collapsed replication fork and telomere maintenance in the absence of telomerase. In addition, significant progress has been made towards understanding microhomology-mediated BIR (MMBIR) that can promote complex chromosomal rearrangements, including those associated with cancer and those leading to a number of neurological disorders in humans.
Collapse
Affiliation(s)
- Cynthia J Sakofsky
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , US National Institutes of Health , Research Triangle Park , NC , USA
| | - Anna Malkova
- b Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
16
|
Li F, Yue Z, Xu T, Chen M, Zhong L, Liu T, Jing X, Deng J, Hu B, Liu Y, Wang H, Lai KN, Sun L, Liu J, Maxwell PH, Wang Y. Dent Disease in Chinese Children and Findings from Heterozygous Mothers: Phenotypic Heterogeneity, Fetal Growth, and 10 Novel Mutations. J Pediatr 2016; 174:204-210.e1. [PMID: 27174143 PMCID: PMC7611024 DOI: 10.1016/j.jpeds.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To characterize the phenotypes of Dent disease in Chinese children and their heterozygous mothers and to establish genetic diagnoses. STUDY DESIGN Using a modified protocol, we screened 1288 individuals with proteinuria. A diagnosis of Dent disease was established in 19 boys from 16 families by the presence of loss of function/deleterious mutations in CLCN5 or OCRL1. We also analyzed 16 available patients' mothers and examined their pregnancy records. RESULTS We detected 14 loss of function/deleterious mutations of CLCN5 in 15 boys and 2 mutations of OCRL1 in 4 boys. Of the patients, 16 of 19 had been wrongly diagnosed with other diseases and 11 of 19 had incorrect or unnecessary treatment. None of the patients, but 6 of 14 mothers, had nephrocalcinosis or nephrolithiasis at diagnosis. Of the patients, 8 of 14 with Dent disease 1 were large for gestational age (>90th percentile); 8 of 15 (53.3%) had rickets. We also present predicted structural changes for 4 mutant proteins. CONCLUSIONS Pediatric Dent disease often is misdiagnosed; genetic testing achieves a correct diagnosis. Nephrocalcinosis or nephrolithiasis may not be sensitive diagnostic criteria. We identified 10 novel mutations in CLCN5 and OCRL1. The possibility that altered CLCN5 function could affect fetal growth and a possible link between a high rate of rickets and low calcium intake are discussed.
Collapse
Affiliation(s)
- Fucheng Li
- Department of Medical Genetics, Genome Research Center, Zhongshan School of Medicine, Sun Yat-sen University
| | - Zhihui Yue
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Minghui Chen
- Center for Reproductive Medicine, Sun Yat-sen University
| | - Liangying Zhong
- Department of Clinical Laboratory, First Affiliated Hospital, Sun Yat-sen University
| | - Ting Liu
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Xiangyi Jing
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong Province, China
| | - Jia Deng
- Reproductive Center, Changsha Hospital for Maternal & Children Health Care, Changsha, Hunan Province, China
| | - Bin Hu
- Department of Medical Genetics, Genome Research Center, Zhongshan School of Medicine, Sun Yat-sen University
| | - Yuling Liu
- Department of Pediatrics, Boai Hospital, Zhongshan
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kar N. Lai
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Liangzhong Sun
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Patrick H. Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yiming Wang
- Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Beijing Genomics Institute (BGI) in Shenzhen, Guangdong Province, China.
| |
Collapse
|
17
|
Dhokarh D, Abyzov A. Elevated variant density around SV breakpoints in germline lineage lends support to error-prone replication hypothesis. Genome Res 2016; 26:874-81. [PMID: 27216746 PMCID: PMC4937565 DOI: 10.1101/gr.205484.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/23/2016] [Indexed: 01/26/2023]
Abstract
Copy number variants (CNVs) are a class of structural variants that may involve complex genomic rearrangements (CGRs) and are hypothesized to have additional mutations around their breakpoints. Understanding the mechanisms underlying CNV formation is fundamental for understanding the repair and mutation mechanisms in cells, thereby shedding light on evolution, genomic disorders, cancer, and complex human traits. In this study, we used data from the 1000 Genomes Project to analyze hundreds of loci harboring heterozygous germline deletions in the subjects NA12878 and NA19240. By utilizing synthetic long-read data (longer than 2 kbp) in combination with high coverage short-read data and, in parallel, by comparing with parental genomes, we interrogated the phasing of these deletions with the flanking tens of thousands of heterozygous SNPs and indels. We found that the density of SNPs/indels flanking the breakpoints of deletions (in-phase variants) is approximately twice as high as the corresponding density for the variants on the haplotype without deletion (out-of-phase variants). This fold change was even larger for the subset of deletions with signatures of replication-based mechanism of formation. The allele frequency (AF) spectrum for deletions is enriched for rare events; and the AF spectrum for in-phase SNPs is shifted toward this deletion spectrum, thus offering evidence consistent with the concomitance of the in-phase SNPs/indels with the deletion events. These findings therefore lend support to the hypothesis that the mutational mechanisms underlying CNV formation are error prone. Our results could also be relevant for resolving mutation-rate discrepancies in human and to explain kataegis.
Collapse
Affiliation(s)
- Dhananjay Dhokarh
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
18
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
19
|
Sakofsky CJ, Ayyar S, Deem AK, Chung WH, Ira G, Malkova A. Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements. Mol Cell 2015; 60:860-72. [PMID: 26669261 DOI: 10.1016/j.molcel.2015.10.041] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 01/06/2023]
Abstract
Complex genomic rearrangements (CGRs) are a hallmark of many human diseases. Recently, CGRs were suggested to result from microhomology-mediated break-induced replication (MMBIR), a replicative mechanism involving template switching at positions of microhomology. Currently, the cause of MMBIR and the proteins mediating this process remain unknown. Here, we demonstrate in yeast that a collapse of homology-driven break-induced replication (BIR) caused by defective repair DNA synthesis in the absence of Pif1 helicase leads to template switches involving 0-6 nt of homology, followed by resolution of recombination intermediates into chromosomal rearrangements. Importantly, we show that these microhomology-mediated template switches, indicative of MMBIR, are driven by translesion synthesis (TLS) polymerases Polζ and Rev1. Thus, an interruption of BIR involving fully homologous chromosomes in yeast triggers a switch to MMBIR catalyzed by TLS polymerases. Overall, our study provides important mechanistic insights into the initiation of MMBIR associated with genomic rearrangements, similar to those promoting diseases in humans.
Collapse
Affiliation(s)
| | - Sandeep Ayyar
- Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - Angela K Deem
- Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - Woo-Hyun Chung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Weckselblatt B, Rudd MK. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet 2015; 31:587-599. [PMID: 26209074 PMCID: PMC4600437 DOI: 10.1016/j.tig.2015.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023]
Abstract
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Chen JM, Férec C, Cooper DN. Complex Multiple-Nucleotide Substitution Mutations Causing Human Inherited Disease Reveal Novel Insights into the Action of Translesion Synthesis DNA Polymerases. Hum Mutat 2015; 36:1034-8. [PMID: 26172832 DOI: 10.1002/humu.22831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases allow the bypass of unrepaired lesions during DNA replication. Based upon mutational signatures of a subtype of multiple-nucleotide substitution (MNS) mutations causing human inherited disease, we have recently postulated two properties of TLS DNA polymerases in DNA repair, namely, the generation of neo-microhomologies potentiating strand-misalignment, and additional microlesions within the templated inserts when recruited to stalled replication forks. To provide further support for this postulate, we analyzed the mutational signatures of a new and complex subtype of pathogenic MNS mutation. Several mutations containing long templated inserts (8-19 bp) that are highly informative with regard to their underlying mutational mechanisms, harbor imprints of TLS DNA polymerase action. Dissecting the mechanism underlying the generation of the 19-bp insert implicated repeated participation of TLS DNA polymerases in the conversion of a damaged base into a complex MNS lesion through a process of successive template switching and bypass repair.
Collapse
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Su P, Wang Y, Cooper DN, Zhu W, Huang D, Férec C, Wang Y, Chen JM. Disclosing the Hidden Structure and Underlying Mutational Mechanism of a Novel Type of Duplication CNV Responsible for Hereditary Multiple Osteochondromas. Hum Mutat 2015; 36:758-63. [PMID: 25990786 DOI: 10.1002/humu.22815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 02/05/2023]
Abstract
The additional mutational complexity associated with copy number variation (CNV) can provide important clues as to the underlying mechanisms of CNV formation. Correct annotation of the additional mutational complexity is, however, a prerequisite for establishing the mutational mechanism. We illustrate this point through the characterization of a novel ∼230 kb EXT1 duplication CNV causing autosomal dominant hereditary multiple osteochondromas. Whole-genome sequencing initially identified the CNV as having a 22-bp insertion at the breakpoint junction and, unprecedentedly, multiple breakpoint-flanking micromutations on both sides of the duplication. Further investigation revealed that this genomic rearrangement had a duplication-inverted triplication-duplication structure, the inverted triplication being a 41-bp sequence synthesized from a nearby template. This permitted the identification of the sequence determinants of both the initiation (an inverted Alu repeat) and termination (a triplex-forming sequence) of break-induced replication and suggested a possible model for the repair of replication-associated double-strand breaks.
Collapse
Affiliation(s)
- Peiqiang Su
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Wang
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wenjuan Zhu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Yiming Wang
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, China.,Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| |
Collapse
|