1
|
Al Amri WS, Al Jabri M, Al Abri A, Hughes TA. Cancer Genetics in the Arab World. Technol Cancer Res Treat 2025; 24:15330338251336829. [PMID: 40261300 PMCID: PMC12035023 DOI: 10.1177/15330338251336829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Cancer remains a major global health burden, with incidence rates rising globally. The Arab world, which is often regarded as an underrepresented population in literature, shows distinct patterns in cancer incidences, genetics, and outcomes in comparison with Western populations. This review aims to highlight key genomic studies conducted in the Arab world. We describe the epidemiological and genetic landscape of cancer in the Arab populations, focusing on lung, breast, and colorectal cancers, given their prominence and distinctive patterns in the region. We utilised data from GLOBOCAN 2022 and published genomic studies to assess subregional incidence trends, identify significant mutations, and explore hereditary and early-onset cancers profiles. Breast, lung, and colorectal cancers dominate the cancer profile in the region, with disparities in genetic alterations when compared to global trends. Variation in EGFR mutation frequencies in lung cancer across diverse ethnicities in the MENA region is representative of the extreme heterogeneity in the Arab region. Variations in BRCA1/2 mutation frequency, and unique founder mutations highlight breast cancer's particular regional genetic traits. Similarly, colorectal cancer studies show variations in mutational profiles, such as a low incidence of BRAF mutations and distinct epigenetic characteristics that represent region-specific disease pathways. Early-onset cancers, particularly breast and colorectal cancers, occur at higher rates than in Western populations and often diverge from the typical germline mutation patterns reported globally. The review emphasises the importance of conducting localised genetic studies in improving personalised medicine and public health strategies. Despite these efforts, significant gaps remain, particularly in understanding early-onset cancers and hereditary cancer genetic disorders, which are overrepresented in the region. Further research on the genetic basis of cancer in Arab populations is essential for advancing personalised treatment and improving cancer outcomes in these under-researched groups.
Collapse
Affiliation(s)
- Waleed S. Al Amri
- Department of Histopathology & Cytopathology, Royal Hospital, Muscat, Oman
| | - Muna Al Jabri
- Sultan Qaboos Comprehensive Cancer Care and Research Centre, University Medical City, Muscat, Oman
| | - Aisha Al Abri
- Department of Histopathology & Cytopathology, Royal Hospital, Muscat, Oman
| | - Thomas A. Hughes
- School of Science, Technology and Health, York St. John University, York, UK
- School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Moukadem HA, Fakhreddine MA, Assaf N, Safi N, Al Masry A, Al Darazi M, Mahfouz R, El Saghir NS. Germline pathogenic variants among high hereditary risk patients with breast and ovarian cancer and unaffected subjects in Lebanese Arab women. World J Clin Oncol 2024; 15:1481-1490. [PMID: 39720644 PMCID: PMC11514371 DOI: 10.5306/wjco.v15.i12.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The prevalence of germline pathogenic variants in high hereditary risk breast and/or ovarian cancer patients and unaffected subjects referred for testing is an unmet need in low and middle-income countries. AIM To determine the prevalence of germline pathogenic variants in high hereditary risk patients with breast and/or ovarian cancer and unaffected individuals. METHODS We retrospectively reviewed records of patients and unaffected subjects referred for germline pathogenic variant testing due to high hereditary risk between 2010-2020. Data was collected and analyzed on Excel sheet. RESULTS In total, 358 individuals were included, including 257 patients and 101 unaffected individuals with relatives with breast or ovarian cancer. The prevalence of breast cancer susceptibility gene (BRCA) 1/2 pathogenic variants was 8.63% (19/220) in patients with breast cancer, and 15.1% (5/33) in those with ovarian cancer. Among the 25 of 220 patients with breast cancer tested by next-generation sequencing, 3 patients had pathogenic variants other than BRCA1/2. The highest risk was observed in those aged 40 years with breast cancer and a positive family history, where the BRCA1/2 prevalence was 20.1% (9/43). Among the unaffected subjects, 31.1% (14/45) had the same BRCA1/2 pathogenic variants in their corresponding relatives. Among the subjects referred because of a positive family history of cancer without known hereditary factors, 5.35% (3/56) had pathogenic variants of BRCA1 and BRCA2. The c.131G>T nucleotide change was noted in one patient and two unrelated unaffected subjects with a BRCA1 pathogenic variant. CONCLUSION This study showed a 8.63% prevalence of pathogenic variants in patients with breast cancer and a 15.1% prevalence in patients with ovarian cancer. Among the relatives of patients with BRCA1/2 pathogenic variants, 31% tested positive for the same variant, while 5.3% of subjects who tested positive due to a family history of breast cancer had a BRCA pathogenic variant.
Collapse
Affiliation(s)
- Hiba A Moukadem
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Mohammad A Fakhreddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Nada Assaf
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1001, Lebanon
| | - Nadine Safi
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Ahmad Al Masry
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Monita Al Darazi
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1001, Lebanon
| | - Nagi S El Saghir
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
3
|
Siraj AK, Bu R, Azam S, Qadri Z, Iqbal K, Parvathareddy SK, Al-Dayel F, Al-Kuraya KS. Whole Exome-Wide Association Identifies Rare Variants in APC Associated with High-Risk Colorectal Cancer in the Middle East. Cancers (Basel) 2024; 16:3720. [PMID: 39518157 PMCID: PMC11545597 DOI: 10.3390/cancers16213720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Colorectal cancer (CRC) displays a complex pattern of inheritance. It is postulated that much of the missing heritability of CRC is enriched in high-impact rare alleles, which might play a crucial role in the etiology and susceptibility of CRC. Methods: In this study, an exome-wide association analysis was performed in 146 patients with high-risk CRC in the Middle East and 1395 healthy controls. The aim was to identify rare germline variants in coding regions and their splicing sites associated with high-risk CRC in the Middle Eastern population. Results: Rare inactivating variants (RIVs) in APC had the strongest association with high-risk CRC (6/146 in cases vs. 1/1395 in controls, OR = 59.7, p = 5.13 × 10-12), whereas RIVs in RIMS1, an RAS superfamily member, were significantly associated with high-risk CRC (5/146 case vs. 2/1395 controls, OR = 24.7, p = 2.03 × 10-8). Rare damaging variants in 17 genes were associated with high-risk CRC at the exome-wide threshold (p < 2.5 × 10-6). Based on the sequence kernel association test, nonsynonymous variants in six genes (TNXB, TAP2, GPSM3, ADGRG4, TMEM229A, and ANKRD33B) had a significant association with high-risk CRC. RIVs in APC-the most common high-penetrance genetic factor-were associated with patients with high-risk CRC in the Middle East. Individuals who inherited APC RIVs had an approximate 60-fold increased risk of developing CRC and were likely to develop the disease earlier. Conclusions: We identified new potential CRC predisposition variants in other genes that could play a role in CRC inheritance. However, large collaborative studies are needed to confirm the association of these variants with high-risk CRC. These results provide information for counseling patients with high-risk CRC and their families in our population.
Collapse
Affiliation(s)
- Abdul Khalid Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Saud Azam
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Zeeshan Qadri
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Kaleem Iqbal
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (R.B.); (S.A.); (Z.Q.); (K.I.); (S.K.P.)
| |
Collapse
|
4
|
Bu R, Siraj AK, Al-Rasheed M, Iqbal K, Azam S, Qadri Z, Haqawi W, Tulbah A, Al-Dayel F, Almalik O, Al-Kuraya KS. Identification and characterization of ATM founder mutation in BRCA-negative breast cancer patients of Arab ethnicity. Sci Rep 2023; 13:20924. [PMID: 38017116 PMCID: PMC10684510 DOI: 10.1038/s41598-023-48231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women worldwide with germline pathogenic variants/likely pathogenic variants (PVs/LPVs) in BRCA1/2 accounting for a large portion of hereditary cases. Recently, heterozygous PVs/LPVs in the ATM serine/threonine kinase or Ataxia-telangiectasia mutated gene (ATM) has been identified as a moderate susceptibility factor for BC in diverse ethnicities. However, the prevalence of ATM PVs/LPVs in BC susceptibility in Arab populations remains largely unexplored. This study investigated the prevalence of ATM PVs/LPVs among BC patients from Saudi Arabia, employing capture-sequencing technology for ATM PVs/LPVs screening in a cohort of 715 unselected BC patients without BRCA1/2 PVs/LPVs. In addition, founder mutation analysis was conducted using the PHASE program. In our entire cohort, four unique PVs/LPVs in the ATM gene were identified in six cases (0.8%). Notably, one recurrent LPV, c.6115G > A:p.Glu2039Lys was identified in three cases, for which haplotype analysis confirmed as a novel putative founder mutation traced back to 13 generations on average. This founder mutation accounted for half of all identified mutant cases and 0.4% of total screened cases. This study further reveals a significant correlation between the presence of ATM mutation and family history of BC (p = 0.0127). These findings underscore an approximate 0.8% prevalence of ATM germline PVs/LPVs in Arab BC patients without BRCA1/2 PVs/LPVs and suggest a founder effect of specific recurrent ATM mutation. These insights can help in the design of a genetic testing strategy tailored to the local population in Saudi Arabia, thereby, enabling more accurate clinical management and risk prediction.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Osama Almalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia.
- Research Centre at KFNCCC, Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Narayan P, Ahsan MD, Webster EM, Perez L, Levi SR, Harvey B, Wolfe I, Beaumont S, Brewer JT, Siegel D, Thomas C, Christos P, Hickner A, Chapman-Davis E, Cantillo E, Holcomb K, Sharaf RN, Frey MK. Partner and localizer of BRCA2 (PALB2) pathogenic variants and ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2023; 177:72-85. [PMID: 37651980 DOI: 10.1016/j.ygyno.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Approximately 20% of ovarian cancers are due to an underlying germline pathogenic variant. While pathogenic variants in several genes have been well-established in the development of hereditary ovarian cancer (e.g. BRCA1/2, RAD51C, RAD51D, BRIP1, mismatch repair genes), the role of partner and localizer of BRCA2 (PALB2) remains uncertain. We sought to utilize meta-analysis to evaluate the association between PALB2 germline pathogenic variants and ovarian cancer. METHODS We conducted a systematic review and meta-analysis. We searched key electronic databases to identify studies evaluating multigene panel testing in people with ovarian cancer. Eligible trials were subjected to meta-analysis. RESULTS Fifty-five studies met inclusion criteria, including 48,194 people with ovarian cancer and information available on germline PALB2 pathogenic variant status. Among people with ovarian cancer and available PALB2 sequencing data, 0.4% [95% CI 0.3-0.4] harbored a germline pathogenic variant in the PALB2 gene. The pooled odds ratio (OR) for carrying a PALB2 pathogenic variant among the ovarian cancer population of 20,474 individuals who underwent germline testing was 2.48 [95% CI 1.57-3.90] relative to 123,883 controls. CONCLUSIONS Our meta-analysis demonstrates that the pooled OR for harboring a PALB2 germline pathogenic variant among people with ovarian cancer compared to the general population is 2.48 [95% CI 1.57-3.90]. Prospective studies evaluating the role of germline PALB2 pathogenic variants in the development of ovarian cancer are warranted.
Collapse
|
6
|
Siraj AK, Bu R, Parvathareddy SK, Iqbal K, Azam S, Qadri Z, Al-Rasheed M, Haqawi W, Diaz M, Victoria IG, Al-Badawi IA, Tulbah A, Al-Dayel F, Ajarim D, Al-Kuraya KS. PALB2 germline mutations in a large cohort of Middle Eastern breast-ovarian cancer patients. Sci Rep 2023; 13:7666. [PMID: 37169825 PMCID: PMC10175539 DOI: 10.1038/s41598-023-34693-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
The PALB2 gene is a breast cancer (BC) and ovarian cancer (OC) predisposition gene involved in the homologous recombination repair pathway. However, the prevalence and clinicopathological association of PALB2 pathogenic/likely pathogenic (PV/LPV) variants in Middle East is still not fully explored. Total 918 BC/OC patients from Saudi Arabia were selected for PALB2 mutations screening using capture sequencing technology. Five heterozygous PVs or LPVs were identified in six cases, accounting for 0.65% (6/918) of entire cohort. Two cases (33.3%) harbored PVs and four cases (66.7%) carried LPVs. Four PVs/LPVs (80%) were frameshift along with one novel splicing LPV (c.2835-2_2835-1delinsTT). One recurrent LPV (c.3425delT: p.L1142fs) was identified in two cases. All six affected carriers have breast cancer diagnosis with median age of 39.5 years (range 34-49 years). Only two cases (33%) have documented family history of cancer. Breast cancer phenotype was invasive ductal unilateral cancer in all cases with 66.7% of hormone receptor positive and 16% of triple negative tumors. Germline PVs/LPVs in the PALB2 gene were observed in low frequency of 0.65% in Saudi BC and/or OC. Our study confirms one recurrent LPV and one novel LPV in Saudi breast cancer patients.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mark Diaz
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ingrid G Victoria
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Dahish Ajarim
- Oncology Center, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
7
|
Bu R, Siraj AK, Parvathareddy SK, Iqbal K, Azam S, Qadri Z, Al-Rasheed M, Haqawi W, Diaz M, Alobaisi K, Annaiyappanaidu P, Siraj N, AlHusaini H, Alomar O, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Lynch Syndrome Identification in Saudi Cohort of Endometrial Cancer Patients Screened by Universal Approach. Int J Mol Sci 2022; 23:ijms232012299. [PMID: 36293153 PMCID: PMC9603045 DOI: 10.3390/ijms232012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/09/2022] Open
Abstract
Lynch syndrome (LS) is the most common cause of inherited endometrial cancer (EC). The prevalence and molecular characteristic of LS in Middle Eastern women with EC have been underexplored. To evaluate the frequency of LS in a cohort of EC patients from Saudi Arabia, a total of 436 EC cases were screened utilizing immunohistochemistry (IHC), MLH1 promoter methylation analysis and next-generation sequencing technology. A total of 53 of 436 (12.2%) ECs were classified as DNA mismatch repair-deficient (dMMR). MLH1 promoter hypermethylation was detected in 30 ECs (6.9%). Three ECs (0.7%) were found to be LS harboring germline pathogenic variants (PVs)/likely pathogenic variants (LPVs): two in the MSH2 gene and one in the MSH6 gene. Three ECs (0.7%) were Lynch-like syndrome (LLS) carrying double somatic MSH2 PVs/LPVs. Seven cases were found to have variants of uncertain significance in cancer-related genes other than MMR genes. Our results indicate that LS prevalence is low among Saudi EC patients and LLS is as common as LS in this ethnicity. Our findings could help in better understanding of the prevalence and mutational spectrum of this syndrome in Saudi Arabia, which may help in defining best strategies for LS identification, prevention and genetic counseling for EC patients.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdul K. Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mark Diaz
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Khadija Alobaisi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hamed AlHusaini
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Osama Alomar
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ismail A. Al-Badawi
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Correspondence: ; Tel.: +966-1-205-5167
| |
Collapse
|
8
|
Mohammed EM. High Number of Familial Breast Cancer Cases in the Arabian Gulf Countries: Investigating the Reasons. Breast Cancer (Auckl) 2022; 16:11782234221107121. [PMID: 35783595 PMCID: PMC9243472 DOI: 10.1177/11782234221107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eiman M Mohammed
- Molecular Genetics Laboratory, Kuwait
Cancer Control Center, Ministry of Health, Shuwaikh, Kuwait
| |
Collapse
|
9
|
Bellcross CA. Hereditary Breast and Ovarian Cancer. Obstet Gynecol Clin North Am 2022; 49:117-147. [DOI: 10.1016/j.ogc.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Al-Kuraya KS. Genetic risk of cancer: a tale of diversity from the Middle East. Lancet Oncol 2022; 23:318-319. [DOI: 10.1016/s1470-2045(22)00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
|
11
|
Al-Muhaizea MA, Aldeeb H, Almass R, Jaber H, Binhumaid F, Alquait L, Abukhalid M, Aldhalaan H, Alsagob M, Al-Bakheet A, Aldosary M, Alkofide H, Alrasheed MM, Colak D, Kaya N. Genetics of ataxia telangiectasia in a highly consanguineous population. Ann Hum Genet 2021; 86:34-44. [PMID: 34582042 DOI: 10.1111/ahg.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Ataxia telangiectasia (AT) is a rare autosomal recessive multisystemic disorder. It usually presents in toddler years with progressive ataxia and oculomotor apraxia, or less commonly, in the late-first or early-second decade of life with mixed movement disorders. Biallelic mutations in ataxia telangiectasia mutated gene (ATM) cause AT phenotype, a disease not well documented in Saudi Arabia, a highly consanguineous society. We studied several Saudi AT patients, identified ATM variants, and investigated associated clinical features. We included 17 patients from 12 consanguineous families. All patients had comprehensive clinical and radiological assessment, and most were examined through whole-exome sequencing (WES). Selected individuals were analyzed using various genetic approaches. We identified five different ATM variants in our patients: three previously reported mutations, and two novel variants. Nearly all patients had classical AT presentation except for two patients with a milder phenotype. Among the three known variants, a deletion causing truncation (c.381delA resulting in p.(Val128Ter)) was identified in 13 patients. Two patients harboured the other two truncating variants, (c.9001_9002delAG resulting in p.Ser3001Phefs*6) and (c.9066delA resulting in p.Glu3023Alafs*10) and two patients had novel compound heterozygous variants (NM_000051.3:Paternal Allele:c.8762C > G;p.Thr2921Arg and Maternal Allele:c.1057T > C;p.Cys353Arg). We speculate that c.381delA is a founder mutation in our population. This study provides a genotype-phenotype relationship in a previously unstudied consanguineous population. Our findings contribute to improve local clinical care, therapy, and genetic counseling.
Collapse
Affiliation(s)
- Mohammed A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hanouf Aldeeb
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Jaber
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Felwa Binhumaid
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Laila Alquait
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Abukhalid
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hesham Aldhalaan
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Albandary Al-Bakheet
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Alkofide
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maha M Alrasheed
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Berliner JL, Cummings SA, Boldt Burnett B, Ricker CN. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2021; 30:342-360. [PMID: 33410258 DOI: 10.1002/jgc4.1374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Cancer risk assessment and genetic counseling for hereditary breast and ovarian cancer (HBOC) are a communication process to inform and prepare patients for genetic test results and the related medical management. An increasing number of healthcare providers are active in the delivery of cancer risk assessment and testing, which can have enormous benefits for enhanced patient care. However, genetics professionals remain key in the multidisciplinary care of at-risk patients and their families, given their training in facilitating patients' understanding of the role of genetics in cancer development, the potential psychological, social, and medical implications associated with cancer risk assessment and genetic testing. A collaborative partnership of non-genetics and genetics experts is the ideal approach to address the growing number of patients at risk for hereditary breast and ovarian cancer. The goal of this practice resource is to provide allied health professionals an understanding of the key components of risk assessment for HBOC as well as the use of risk models and published guidelines for medical management. We also highlight what patient types are appropriate for genetic testing, what are the most appropriate test(s) to consider, and when to refer individuals to a genetics professional. This practice resource is intended to serve as a resource for allied health professionals in determining their approach to delivering comprehensive care for families and individuals facing HBOC. The cancer risk and prevalence figures in this document are based on cisgender women and men; the risks for transgender or non-binary individuals have not been studied and therefore remain poorly understood.
Collapse
Affiliation(s)
- Janice L Berliner
- Genetic Counseling Department, Bay Path University, East Longmeadow, MA, USA
| | | | | | - Charité N Ricker
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Suszynska M, Kozlowski P. Summary of BARD1 Mutations and Precise Estimation of Breast and Ovarian Cancer Risks Associated with the Mutations. Genes (Basel) 2020; 11:genes11070798. [PMID: 32679805 PMCID: PMC7397132 DOI: 10.3390/genes11070798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, numerous BARD1 mutations/pathogenic variants (PVs) have been found in patients with breast cancer (BC) and ovarian cancer (OC). However, their role in BC and OC susceptibility remains controversial, and strong evidence-based guidelines for carriers are not yet available. Herein, we present a comprehensive catalog of BARD1 PVs identified in large cumulative cohorts of ~48,700 BC and ~20,800 OC cases (retrieved from 123 studies examining the whole coding sequence of BARD1). Using these resources, we compared the frequency of BARD1 PVs in the cases and ~134,100 controls from the gnomAD database and estimated the effect of the BARD1 PVs on BC and OC risks. The analysis revealed that BARD1 is a BC moderate-risk gene (odds ratio (OR) = 2.90, 95% CIs:2.25–3.75, p < 0.0001) but not an OC risk gene (OR = 1.36, 95% CIs:0.87–2.11, p = 0.1733). In addition, the BARD1 mutational spectrum outlined in this study allowed us to determine recurrent PVs and evaluate the variant-specific risk for the most frequent PVs. In conclusion, these precise estimates improve the understanding of the role of BARD1 PVs in BC and OC predisposition and support the need for BARD1 diagnostic testing in BC patients.
Collapse
Affiliation(s)
| | - Piotr Kozlowski
- Correspondence: ; Tel.: +48-618-528-503 (ext. 261); Fax: +48-618-520-532
| |
Collapse
|
14
|
Siraj AK, Bu R, Iqbal K, Parvathareddy SK, Masoodi T, Siraj N, Al-Rasheed M, Kong Y, Ahmed SO, Al-Obaisi KAS, Victoria IG, Arshad M, Al-Dayel F, Abduljabbar A, Ashari LH, Al-Kuraya KS. POLE and POLD1 germline exonuclease domain pathogenic variants, a rare event in colorectal cancer from the Middle East. Mol Genet Genomic Med 2020; 8:e1368. [PMID: 32567205 PMCID: PMC7434734 DOI: 10.1002/mgg3.1368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is a major contributor to morbidity and mortality related to cancer. Only ~5% of all CRCs occur as a result of pathogenic variants in well‐defined CRC predisposing genes. The frequency and effect of exonuclease domain pathogenic variants of POLE and POLD1 genes in Middle Eastern CRCs is still unknown. Methods Targeted capture sequencing and Sanger sequencing technologies were employed to investigate the germline exonuclease domain pathogenic variants of POLE and POLD1 in Middle Eastern CRCs. Immunohistochemical analysis of POLE and POLD1 was performed to look for associations between protein expression and clinico‐pathological characteristics. Results Five damaging or possibly damaging variants (0.44%) were detected in 1,135 CRC cases, four in POLE gene (0.35%, 4/1,135) and one (0.1%, 1/1,135) in POLD1 gene. Furthermore, low POLE protein expression was identified in 38.9% (417/1071) cases and a significant association with lymph node involvement (p = .0184) and grade 3 tumors (p = .0139) was observed. Whereas, low POLD1 expression was observed in 51.9% (555/1069) of cases and was significantly associated with adenocarcinoma histology (p = .0164), larger tumor size (T3 and T4 tumors; p = .0012), and stage III tumors (p = .0341). Conclusion POLE and POLD1 exonuclease domain pathogenic variants frequency in CRC cases was very low and these exonuclease domain pathogenic variants might be rare causative events of CRC in the Middle East. POLE and POLD1 can be included in multi‐gene panels to screen CRC patients.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Sandeep K Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Yan Kong
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Saeeda O Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Khadija A S Al-Obaisi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Ingrid G Victoria
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Maham Arshad
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alaa Abduljabbar
- Colorectal Section, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Luai H Ashari
- Colorectal Section, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| |
Collapse
|
15
|
Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res 2020; 13:50. [PMID: 32359370 PMCID: PMC7196220 DOI: 10.1186/s13048-020-00654-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background It is estimated that more than 20% of ovarian cancer cases are associated with a genetic predisposition that is only partially explained by germline mutations in the BRCA1 and BRCA2 genes. Recently, several pieces of evidence showed that mutations in three genes involved in the homologous recombination DNA repair pathway, i.e., BRIP1, RAD51C, and RAD51D, are associated with a high risk of ovarian cancer. To more precisely estimate the ovarian cancer risk attributed to BRIP1, RAD51C, and RAD51D mutations, we performed a meta-analysis based on a comparison of a total of ~ 29,400 ovarian cancer patients from 63 studies and a total of ~ 116,000 controls from the gnomAD database. Results The analysis allowed precise estimation of ovarian cancer risks attributed to mutations in BRIP1, RAD51C, and RAD51D, confirming that all three genes are ovarian cancer high-risk genes (odds ratio (OR) = 4.94, 95%CIs:4.07–6.00, p < 0.0001; OR = 5.59, 95%CIs:4.42–7.07, p < 0.0001; and OR = 6.94, 95%CIs:5.10–9.44, p < 0.0001, respectively). In the present report, we show, for the first time, a mutation-specific risk analysis associated with distinct, recurrent, mutations in the genes. Conclusions The meta-analysis provides evidence supporting the pathogenicity of BRIP1, RAD51C, and RAD51D mutations in relation to ovarian cancer. The level of ovarian cancer risk conferred by these mutations is relatively high, indicating that after BRCA1 and BRCA2, the BRIP1, RAD51C, and RAD51D genes are the most important ovarian cancer risk genes, cumulatively contributing to ~ 2% of ovarian cancer cases. The inclusion of the genes into routine diagnostic tests may influence both the prevention and the potential treatment of ovarian cancer.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Street, 61-704, Poznan, Poland
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago, 60 Hanover Street, Dunedin, 9016, New Zealand.,Department of Biology and Medical Genetics, Medical University of Gdansk, Debinki 1 St., 80-210, Gdansk, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Street, 61-704, Poznan, Poland.
| |
Collapse
|
16
|
Van Marcke C, Helaers R, De Leener A, Merhi A, Schoonjans CA, Ambroise J, Galant C, Delrée P, Rothé F, Bar I, Khoury E, Brouillard P, Canon JL, Vuylsteke P, Machiels JP, Berlière M, Limaye N, Vikkula M, Duhoux FP. Tumor sequencing is useful to refine the analysis of germline variants in unexplained high-risk breast cancer families. Breast Cancer Res 2020; 22:36. [PMID: 32295625 PMCID: PMC7161277 DOI: 10.1186/s13058-020-01273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Multigene panels are routinely used to assess for predisposing germline mutations in families at high breast cancer risk. The number of variants of unknown significance thereby identified increases with the number of sequenced genes. We aimed to determine whether tumor sequencing can help refine the analysis of germline variants based on second somatic genetic events in the same gene. Methods Whole-exome sequencing (WES) was performed on whole blood DNA from 70 unrelated breast cancer patients referred for genetic testing and without a BRCA1, BRCA2, TP53, or CHEK2 mutation. Rare variants were retained in a list of 735 genes. WES was performed on matched tumor DNA to identify somatic second hits (copy number alterations (CNAs) or mutations) in the same genes. Distinct methods (among which immunohistochemistry, mutational signatures, homologous recombination deficiency, and tumor mutation burden analyses) were used to further study the role of the variants in tumor development, as appropriate. Results Sixty-eight patients (97%) carried at least one germline variant (4.7 ± 2.0 variants per patient). Of the 329 variants, 55 (17%) presented a second hit in paired tumor tissue. Of these, 53 were CNAs, resulting in tumor enrichment (28 variants) or depletion (25 variants) of the germline variant. Eleven patients received variant disclosure, with clinical measures for five of them. Seven variants in breast cancer-predisposing genes were considered not implicated in oncogenesis. One patient presented significant tumor enrichment of a germline variant in the oncogene ERBB2, in vitro expression of which caused downstream signaling pathway activation. Conclusion Tumor sequencing is a powerful approach to refine variant interpretation in cancer-predisposing genes in high-risk breast cancer patients. In this series, the strategy provided clinically relevant information for 11 out of 70 patients (16%), adapted to the considered gene and the familial clinical phenotype.
Collapse
Affiliation(s)
- Cédric Van Marcke
- Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne De Leener
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Breast Clinic, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Ahmad Merhi
- Laboratory of Translational Oncology and IPG BioBank, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Christine Galant
- Breast Clinic, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Department of Pathology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Paul Delrée
- Department of Pathology, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Bar
- Laboratory of Translational Oncology and IPG BioBank, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Elsa Khoury
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Jean-Luc Canon
- Department of Oncology-Hematology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Peter Vuylsteke
- Department of Medical Oncology, UCLouvain, CHU UCL Namur, site Sainte-Elisabeth, Namur, Belgium
| | - Jean-Pascal Machiels
- Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - François P Duhoux
- Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium. .,Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium. .,Breast Clinic, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
17
|
AlHarthi FS, Qari A, Edress A, Abedalthagafi M. Familial/inherited cancer syndrome: a focus on the highly consanguineous Arab population. NPJ Genom Med 2020; 5:3. [PMID: 32025336 PMCID: PMC6997177 DOI: 10.1038/s41525-019-0110-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The study of hereditary cancer, which accounts for ~10% of cancer cases worldwide is an important subfield of oncology. Our understanding of hereditary cancers has greatly advanced with recent advances in sequencing technology, but as with any genetic trait, gene frequencies of cancer-associated mutations vary across populations, and most studies that have located hereditary cancer genes have been conducted on European or Asian populations. There is an urgent need to trace hereditary cancer genes across the Arab world. Hereditary disease is particularly prevalent among members of consanguineous populations, and consanguineous marriages are particularly common in the Arab world. There are also cultural and educational idiosyncrasies that differentiate Arab populations from other more thoroughly studied groups with respect to cancer awareness and treatment. Therefore, a review of the literature on hereditary cancers in this understudied population was undertaken. We report that BRCA mutations are not as prevalent among Arab breast cancer patients as they are among other ethnic groups, and therefore, other genes may play a more important role. A wide variety of germline inherited mutations that are associated with cancer are discussed, with particular attention to breast, ovarian, colorectal, prostate, and brain cancers. Finally, we describe the state of the profession of familial cancer genetic counselling in the Arab world, and the clinics and societies dedicated to its advances. We describe the complexities of genetic counselling that are specific to the Arab world. Understanding hereditary cancer is heavily dependent on understanding population-specific variations in cancer-associated gene frequencies.
Collapse
Affiliation(s)
- Fawz S AlHarthi
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,2Genetics Counselling Division, Saudi Diagnostic Laboratory, King Faisal Specialist Hospital International Company, Riyadh, Saudi Arabia
| | - Alya Qari
- 3Medical Genetic Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alaa Edress
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,2Genetics Counselling Division, Saudi Diagnostic Laboratory, King Faisal Specialist Hospital International Company, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Siraj AK, Parvathareddy SK, Bu R, Iqbal K, Siraj S, Masoodi T, Concepcion RM, Ghazwani LO, AlBadawi I, Al-Dayel F, Al-Kuraya KS. Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region. Cancer Cell Int 2019; 19:334. [PMID: 31866764 PMCID: PMC6907229 DOI: 10.1186/s12935-019-1058-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2–5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. Methods We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. Results In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. Conclusions Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.
Collapse
Affiliation(s)
- Abdul K Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rong Bu
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Kaleem Iqbal
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sarah Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Tariq Masoodi
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rica Micaela Concepcion
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Laila Omar Ghazwani
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Ismail AlBadawi
- 2Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- 3Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Khawla S Al-Kuraya
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
19
|
Rashid MU, Khan FA, Muhammad N, Loya A, Hamann U. Prevalence of PALB2 Germline Mutations in Early-onset and Familial Breast/Ovarian Cancer Patients from Pakistan. Cancer Res Treat 2019; 51:992-1000. [PMID: 30309218 PMCID: PMC6639217 DOI: 10.4143/crt.2018.356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Partner and localizer of BRCA2 (PALB2) is a breast cancer susceptibility gene that plays an important role in DNA repair. This is the first study assessing the prevalence of PALB2 mutations in early-onset and familial breast/ovarian cancer patients from Pakistan. MATERIALS AND METHODS PALB2 mutation screening was performed in 370 Pakistani patients with early-onset and familial breast/ovarian cancer, who were negative for BRCA1, BRCA2, TP53, CHEK2, and RAD51C mutations, using denaturing high-performance liquid chromatography analysis. Mutations were confirmed by DNA sequencing. Novel PALB2 alterations were analyzed for their potential effect on protein function or splicing using various in silico prediction tools. Three-hundred and seventy-two healthy controls were screened for the presence of the identified (potentially) functional mutations. RESULTS A novel nonsense mutation, p.Y743*, was identified in one familial breast cancer patient (1/127, 0.8%). Besides, four in silico-predicted potentially functional mutations including three missense mutations and one 5' untranslated region mutation were identified: p.D498Y, novel p.G644R, novel p.E744K, and novel c.-134_-133delTCinsGGGT. The mutations p.Y743* and p.D498Y were identified in two familial patients diagnosed with unilateral or synchronous bilateral breast cancer at the ages of 29 and 39, respectively. The other mutations were identified in an early-onset (≤ 30 years of age) breast cancer patient each. All five mutations were absent in 372 healthy controls suggesting that they are disease associated. CONCLUSION Our findings show that PALB2 mutations account for a small proportion of early-onset and hereditary breast/ovarian cancer cases in Pakistan.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Faiz Ali Khan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Noor Muhammad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Wang Y, Liyanarachchi S, Miller KE, Nieminen TT, Comiskey DF, Li W, Brock P, Symer DE, Akagi K, DeLap KE, He H, Koboldt DC, de la Chapelle A. Identification of Rare Variants Predisposing to Thyroid Cancer. Thyroid 2019; 29:946-955. [PMID: 30957677 PMCID: PMC6648188 DOI: 10.1089/thy.2018.0736] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Familial non-medullary thyroid cancer (NMTC) accounts for a relatively small proportion of thyroid cancer cases, but it displays strong genetic predisposition. So far, only a few NMTC susceptible genes and low-penetrance variants contributing to NMTC have been described. This study aimed to identify rare germline variants that may predispose individuals to NMTC by sequencing a cohort of 17 NMTC families. Methods: Whole-genome sequencing and genome-wide linkage analysis were performed in 17 NMTC families. MendelScan and BasePlayer were applied to screen germline variants followed by customized filtering. The remaining candidate variants were subsequently validated by Sanger sequencing. A panel of 277 known cancer predisposition genes was also screened in these families. Results: A total of 41 rare coding candidate variants in 40 genes identified by whole-genome sequencing are reported, including 24 missense, five frameshift, five splice change, and seven nonsense variants. Sanger sequencing confirmed all 41 rare variants and proved their co-segregation with NMTC in the extended pedigrees. In silico functional analysis of the candidate genes using Ingenuity Pathway Analysis showed that cancer was the top category of "Diseases and Disorders." Additionally, a targeted search displayed six variants in known cancer predisposition genes, including one frameshift variant and five missense variants. Conclusions: The data identify rare germline variants that may play important roles in NMTC predisposition. It is proposed that in future research including functional characterization, these variants and genes be considered primary candidates for thyroid cancer predisposition.
Collapse
Affiliation(s)
- Yanqiang Wang
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Katherine E. Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Taina T. Nieminen
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Daniel F. Comiskey
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Li
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - David E. Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katherine E. DeLap
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Daniel C. Koboldt
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Address correspondence to: Albert de la Chapelle, MD, PhD, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, 804 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210
| |
Collapse
|
21
|
Siraj AK, Bu R, Iqbal K, Siraj N, Al-Haqawi W, Al-Badawi IA, Parvathareddy SK, Masoodi T, Tulbah A, Al-Dayel F, Al-Kuraya KS. Prevalence, spectrum, and founder effect of BRCA1 and BRCA2 mutations in epithelial ovarian cancer from the Middle East. Hum Mutat 2019; 40:729-733. [PMID: 30825404 DOI: 10.1002/humu.23736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
Germline mutations in breast cancer susceptibility gene 1 and 2 have previously been estimated to contribute to 13-18% of all epithelial ovarian cancer (EOC). To characterize the prevalence and effect of BRCA1 and BRCA2 mutations in Middle Eastern EOC patients, BRCA mutation screening was performed in 407 unselected ovarian cancer patients using targeted capture and/or Sanger sequencing. A total of 19 different pathogenic variants (PVs) were identified in 50 (12.3%) women. Nine PVs were recurrent accounting for 80% of cases with PVs (40/50) in the entire cohort. Founder mutation analysis revealed only two mutations (c.4136_4137delCT and c.1140dupG) sharing the same haplotypes thus representing founder mutations in the Middle Eastern population. Identification of the mutation spectrum, prevalence, and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment, and development of a cost-effective screening strategy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wael Al-Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Suszynska M, Klonowska K, Jasinska AJ, Kozlowski P. Large-scale meta-analysis of mutations identified in panels of breast/ovarian cancer-related genes - Providing evidence of cancer predisposition genes. Gynecol Oncol 2019; 153:452-462. [PMID: 30733081 DOI: 10.1016/j.ygyno.2019.01.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Germline mutations occurring in the highly penetrant genes BRCA1 and BRCA2 are responsible for only certain cases of familial breast cancer (BC) and ovarian cancer (OC). Thus, the use of NGS multi-gene panel (MGP) testing has recently become very popular. METHODS To estimate a reliable BC and OC risk associated with pathogenic variants in the selected candidate BC/OC predisposition genes, a comprehensive meta-analysis of 48 MGP-based studies analyzing BC/OC patients was conducted. The role of 37 genes was evaluated, comparing, in total, the mutation frequency in ~120,000 BC/OC cases and ~120,000 controls, which guaranteed strong statistical support with high confidence for most analyzed genes. RESULTS We characterized the strategies of MGP analyses and the types and localizations of the identified mutations and showed that 13 and 11 of the analyzed genes were significantly associated with an increased BC and OC risk, respectively. The risk attributed to some of these genes (e.g., CDKN2A and PALB2 for BC) was similar to that observed for BRCA2. The analysis also showed a substantial difference in the profile of genes contributing to either BC or OC risk, including genes specifically associated with a high risk of OC but not BC (e.g., RAD51C, and RAD51D). CONCLUSIONS Our study provides strong statistical proof, defines the risk for many genes often considered candidates for BC/OC predisposition and excludes the role of other genes frequently analyzed in the MGPs. In the context of clinical diagnostics, the results support the knowledge-based interpretation of identified mutations.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Klonowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna J Jasinska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
23
|
Henn J, Spier I, Adam RS, Holzapfel S, Uhlhaas S, Kayser K, Plotz G, Peters S, Aretz S. Diagnostic yield and clinical utility of a comprehensive gene panel for hereditary tumor syndromes. Hered Cancer Clin Pract 2019; 17:5. [PMID: 30680046 PMCID: PMC6343270 DOI: 10.1186/s13053-018-0102-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background In a considerable number of patients with a suspected hereditary tumor syndrome (HTS), no underlying germline mutation is detected in the most likely affected genes. The present study aimed to establish and validate a large gene panel for HTS, and determine its diagnostic yield and clinical utility. Methods The study cohort comprised 173 patients with suspected, but unexplained, HTS (group U) and 64 HTS patients with a broad spectrum of known germline mutations (group K). All patients in group U presented with early age at onset, multiple tumors, and/or a familial clustering of various tumor types; no germline mutation had been identified during routine diagnostics. Sequencing of leukocyte DNA was performed for the 94 HTS genes of the Illumina TruSight™Cancer Panel and 54 additional HTS genes. Results The sensitivity of the panel to identify known germline variants was 99.6%. In addition to known mutations, a total of 192 rare, potentially pathogenic germline variants in 86 genes were identified. Neither the proportion of rare variants per patient (group K: 0.9 variants; group U: 0.8 variants) nor the proportion of variants in the most frequently mutated, moderately penetrant genes CHEK2 and ATM showed significant inter-group difference. Four of the five patients from group U with a truncating CHEK2 mutation had thyroid cancer, pointing to a broader tumor spectrum in patients with pathogenic CHEK2 variants. In 22% of patients from group K, a further potential causative variant was identified. Here, the most interesting finding was an NF1 nonsense mutation in a child with a known TP53 frameshift mutation. In 17% of patients from group U, potential causative variants were identified. In three of these patients (2%), mutations in PMS2, PTEN, or POLD1 were considered to be causative. In both groups, incidental findings with presumptive predictive value were generated. Conclusions The gene panel identified the genetic cause in some prescreened, unexplained HTS patients and generated incidental findings. Some patients harbored predicted pathogenic mutations in more than one established HTS gene, rendering interpretation of the respective alterations challenging. Established moderate risk genes showed an almost equal distribution among patients with known and unexplained disease.
Collapse
Affiliation(s)
- Jonas Henn
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Isabel Spier
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany.,2Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Ronja S Adam
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany.,3Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefanie Holzapfel
- 2Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany.,4Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Siegfried Uhlhaas
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Katrin Kayser
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Guido Plotz
- 5Department of Medicine I, Biomedical Research Laboratory, University of Frankfurt, Frankfurt, Germany
| | - Sophia Peters
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Stefan Aretz
- 1Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany.,2Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| |
Collapse
|