1
|
brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 PMCID: PMC11809303 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- ty j. brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J. Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
2
|
Rakotopare J, Lejour V, Duval C, Eldawra E, Escoffier H, Toledo F. A systematic approach identifies p53-DREAM pathway target genes associated with blood or brain abnormalities. Dis Model Mech 2023; 16:dmm050376. [PMID: 37661832 PMCID: PMC10581385 DOI: 10.1242/dmm.050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Carla Duval
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | | | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| |
Collapse
|
3
|
Ren S, Yang D, Dong Y, Ni W, Wang M, Xing L, Liu T, Hou W, Sun W, Zhang H, Yu Z, Liu Y, Cao J, Yan H, Feng Y, Fang X, Wang Q, Chen F. Protamine 1 as a secreted colorectal cancer-specific antigen facilitating G1/S phase transition under nutrient stress conditions. Cell Oncol (Dordr) 2023; 46:357-373. [PMID: 36593375 PMCID: PMC10060357 DOI: 10.1007/s13402-022-00754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Cancer testis antigens (CTAs) are optimal tumor diagnostic markers and involved in carcinogenesis. However, colorectal cancer (CRC) related CTAs are less reported with impressive diagnostic capability or relevance with tumor metabolism rewiring. Herein, we demonstrated CRC-related CTA, Protamine 1 (PRM1), as a promising diagnostic marker and involved in regulation of cellular growth under nutrient deficiency. METHODS Transcriptomics of five paired CRC tissues was used to screen CRC-related CTAs. Capability of PRM1 to distinguish CRC was studied by detection of clinical samples through enzyme linked immunosorbent assay (ELISA). Cellular functions were investigated in CRC cell lines through in vivo and in vitro assays. RESULTS By RNA-seq and detection in 824 clinical samples from two centers, PRM1 expression were upregulated in CRC tissues and patients` serum. Serum PRM1 showed impressive accuracy to diagnose CRC from healthy controls and benign gastrointestinal disease patients, particularly more sensitive for early-staged CRC. Furthermore, we reported that when cells were cultured in serum-reduced medium, PRM1 secretion was upregulated, and secreted PRM1 promoted CRC growth in culture and in mice. Additionally, G1/S phase transition of CRC cells was facilitated by PRM1 protein supplementation and overexpression via activation of PI3K/AKT/mTOR pathway in serum deficient medium. CONCLUSIONS In general, our research presented PRM1 as a specific CRC antigen and illustrated the importance of PRM1 in CRC metabolism rewiring. The new vulnerability of CRC cells was also provided with the potential to be targeted in future. Diagnostic value and grow factor-like biofunction of PRM1 A represents the secretion process of PRM1 regulated by nutrient deficiency. B represents activation of PI3K/AKT/mTOR pathway of secreted PRM1.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingquan Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongli Dong
- Department of Gastrointestinal Surgery, Heze Municipal Hospital, Heze, China
| | - Weidong Ni
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meiqi Wang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Xing
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenjia Hou
- Department of Burn Surgery, The First Hospital of Naval Medical University, Shanghai, China
| | - Weixuan Sun
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haolong Zhang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhentao Yu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingrui Cao
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbo Yan
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fangfang Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Vial Y, Lainey E, Leblanc T, Baudouin V, Dourthe ME, Gressens P, Verloes A, Cavé H, Drunat S. De novo
NUF2
variant in a novel inherited bone marrow failure syndrome including microcephaly and renal hypoplasia. Br J Haematol 2022; 199:739-743. [DOI: 10.1111/bjh.18461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yoann Vial
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département de Génétique Paris France
- INSERM UMR 1141 NeuroDiderot, Université Paris Cité Paris France
| | - Elodie Lainey
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Laboratoire d'Immuno‐Hématologie Paris France
- INSERM UMR_S1131 Institut de Recherche Saint‐Louis, Université Paris Cité Paris France
| | - Thierry Leblanc
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département d'Immuno‐Hématologie Paris France
| | - Véronique Baudouin
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département de Néphrologie pédiatrique Paris France
| | - Marie Emilie Dourthe
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département d'Immuno‐Hématologie Paris France
| | - Pierre Gressens
- INSERM UMR 1141 NeuroDiderot, Université Paris Cité Paris France
| | - Alain Verloes
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département de Génétique Paris France
- INSERM UMR 1141 NeuroDiderot, Université Paris Cité Paris France
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département de Génétique Paris France
- INSERM UMR_S1131 Institut de Recherche Saint‐Louis, Université Paris Cité Paris France
| | - Séverine Drunat
- Assistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert‐Debré, Département de Génétique Paris France
- INSERM UMR 1141 NeuroDiderot, Université Paris Cité Paris France
| |
Collapse
|
5
|
Identification and Validation of Three Hub Genes Involved in Cell Proliferation and Prognosis of Castration-Resistant Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8761112. [PMID: 36035209 PMCID: PMC9402298 DOI: 10.1155/2022/8761112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Background The acquisition of castration resistance is lethal and inevitable in most prostate cancer patients under hormone therapy. However, effective biomarkers and therapeutic targets for castration-resistant prostate cancer remain to be defined. Methods Comprehensive bioinformatics tools were used to screen hub genes in castration-resistant prostate cancer and were verified in androgen-dependent prostate cancer and castration-resistant prostate cancer in TCGA and the SU2C/PCF Dream Team database, respectively. Gene set enrichment analysis and in vitro experiments were performed to determine the potential functions of hub genes involved in castration-resistant prostate cancer progression. Results Three hub genes were screened out by bioinformatics analysis: MCM4, CENPI, and KNTC1. These hub genes were upregulated in castration-resistant prostate cancer and showed high diagnostic and prognostic value. Moreover, the expression levels of the hub genes were positively correlated with neuroendocrine prostate cancer scores, which represent the degree of castration-resistant prostate cancer aggression. Meanwhile, in vitro experiments confirmed that hub gene expression was increased in castration-resistant prostate cancer cell lines and that inhibition of hub genes hindered cell cycle transition, resulting in suppression of castration-resistant prostate cancer cell proliferation, which confirmed the gene set enrichment analysis results. Conclusions MCM4, CENPI, and KNTC1 could serve as candidate diagnostic and prognostic biomarkers of castration-resistant prostate cancer and may provide potential preventive and therapeutic targets.
Collapse
|