1
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
del Pino Molina L, Monzón Manzano E, Gianelli C, Bravo Gallego LY, Bujalance Fernández J, Acuña P, Serrano YS, Yebra KR, García-Morato MB, Sánchez Zapardiel E, Arias-Salgado EG, Pena RR, Butta N, Granados EL. Effects of two different variants in the MAGT1 gene on B cell subsets, platelet function, and cell glycome composition. Front Immunol 2025; 16:1547808. [PMID: 40170846 PMCID: PMC11958192 DOI: 10.3389/fimmu.2025.1547808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease is caused by hemizygous loss of function (LOF) gene variants in MAGT1. MAGT1 is a plasma membrane transporter of magnesium (Mg2+) that plays a relevant role in immune responses and acts as a second messenger in intracellular signaling, but also it is involved in the glycosylation of proteins. Here we report two gene variants in the MAGT1 gene from two different families with XMEN disease. A de novo variant c.97_98 delinsC affecting one member of one family and three members of a second family presented the hemizygous variant c.80``3G>A, p.Trp268Ter, causing a premature stop codon. Methods We performed a functional validation of these two variants in the MAGT1 gene and their association with decreased NKG2D expression, uncontrolled EBV viremia, and the development of lymphoma-associated complications in three members of the same family. Results We analyzed the B-cell compartment, we found that the B-cell expansion is driven by immature/transitional (CD5- and CD5+) and naïve B cells. The patients presented normal absolute counts of memory B-cells (MBCs) but with differences between them in the diversity of immunoglobulin heavy chain (IgH) isotype distribution in MBC, and diverse reduction of plasma cells. We also explored the alterations of platelets due to hemorrhagic events and a history of thrombocytopenia in some of our patients. We found diminished TRAP-induced calcium flux, P-selectin and CD63 exposure in XMEN patients, while when platelets from patients were stimulated ADP the results were similar to healthy controls. Finally, we explored the glycosylation pattern in platelets and lymphocytes. Our results suggest that different variants in MAGT1 gene might result in different effects on NK cells and platelet glycome composition. Discussion Here, we report the two different outcomes regarding EBV-driven lymphoproliferative complications, the family with three members affected that developed the malignant lymphoproliferative complications before XMEN diagnosis, and the patient with early diagnose of MAGT1 deficiency due to EBV viremia. As a recommendation, XMEN disease should be ruled out in males with impaired clearance of EBV-infection and EBV-driven lymphoproliferative complications.
Collapse
Affiliation(s)
- Lucía del Pino Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | | | - Carla Gianelli
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Luz Yadira Bravo Gallego
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Research on Comprehensive Care for Transplanted Children and Adolescent Group, La Paz Institute for Health Reserach (IdiPAZ), Madrid, Spain
| | - Javier Bujalance Fernández
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paula Acuña
- Hematology Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Yolanda Soto Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Keren Reche Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - María Bravo García-Morato
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Elena Sánchez Zapardiel
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | | | - Rebeca Rodríguez Pena
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Nora Butta
- Hematology Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Eduardo López Granados
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
3
|
Golloshi K, Mitchell W, Kumar D, Malik S, Parikh S, Aljudi AA, Castellino SM, Chandrakasan S. HLH and Recurrent EBV Lymphoma as the presenting manifestation of MAGT1 Deficiency: A Systematic Review of the Expanding Disease Spectrum. J Clin Immunol 2024; 44:153. [PMID: 38896122 DOI: 10.1007/s10875-024-01749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Magnesium transporter 1 (MAGT1) gene loss-of-function variants lead to X-linked MAGT1 deficiency with increased susceptibility to EBV infection and N-glycosylation defect (XMEN), a condition with a variety of clinical and immunological effects. In addition, MAGT1 deficiency has been classified as a congenital disorder of glycosylation (CDG) due to its unique role in glycosylation of multiple substrates including NKG2D, necessary for viral protection. Due to the predisposition for EBV, this etiology has been linked with hemophagocytic lymphohistiocytosis (HLH), however only limited literature exists. Here we present a complex case with HLH and EBV-driven classic Hodgkin lymphoma (cHL) as the presenting manifestation of underlying immune defect. However, the patient's underlying immunodeficiency was not identified until his second recurrence of Hodgkin disease, recurrent episodes of Herpes Zoster, and after he had undergone autologous hematopoietic stem cell transplant (HSCT) for refractory Hodgkin lymphoma. This rare presentation of HLH and recurrent lymphomas without some of the classical immune deficiency manifestations of MAGT1 deficiency led us to review the literature for similar presentations and to report the evolving spectrum of disease in published literature. Our systematic review showcased that MAGT1 predisposes to multiple viruses (including EBV) and adds risk of viral-driven neoplasia. The roles of MAGT1 in the immune system and glycosylation were highlighted through the multiple organ dysfunction showcased by the previously validated Immune Deficiency and Dysregulation Activity (IDDA2.1) score and CDG-specific Nijmegen Pediatric CDG Rating Scale (NPCRS) score for the patient cohort in the systematic review.
Collapse
Affiliation(s)
| | - William Mitchell
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Sakshi Malik
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Suhag Parikh
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Ahmed A Aljudi
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sharon M Castellino
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Aliyath A, Eni-Olotu A, Donaldson N, Trivedi P. Malignancy-associated immune responses: Lessons from human inborn errors of immunity. Immunology 2023; 170:319-333. [PMID: 37335539 DOI: 10.1111/imm.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
It is widely understood that cancer is a significant cause of morbidity and mortality worldwide. Despite numerous available treatments, prognosis for many remains poor, thus, the development of novel therapies remains essential. Given the incredible success of many immunotherapies in this field, the important contribution of the immune system to the control, and elimination, of malignancy is clear. While many immunotherapies target higher-order pathways, for example, through promoting T-cell activation via immune checkpoint blockade, the potential to target specific immunological pathways is largely not well researched. Precisely understanding how immunity can be tailored to respond to specific challenges is an exciting idea with great potential, and may trigger the development of new therapies for cancer. Inborn Errors of Immunity (IEI) are a group of rare congenital disorders caused by gene mutations that result in immune dysregulation. This heterogeneous group, spanning widespread, multisystem immunopathology to specific immune cell defects, primarily manifest in immunodeficiency symptoms. Thus, these patients are particularly susceptible to life-threatening infection, autoimmunity and malignancy, making IEI an especially complex group of diseases. While precise mechanisms of IEI-induced malignancy have not yet been fully elucidated, analysis of these conditions can highlight the importance of particular genes, and downstream immune responses, in carcinogenesis and may help inform mechanisms which can be utilised in novel immunotherapies. In this review, we examine the links between IEIs and cancer, establishing potential connections between immune dysfunction and malignancy and suggesting roles for specific immunological mechanisms involved in preventing carcinogenesis, thus, guiding essential future research focused on cancer immunotherapy and providing valuable insight into the workings of the immune system in both health and disease.
Collapse
|
5
|
Nielsen C, Nilsson C, Assing K, Herlin MK, Skakkebæk A, Larsen M, Rathe M, Beck HC, Vinholt PJ. Compromised PAR1 Activation-A Cause for Bleeding in XMEN? Thromb Haemost 2023; 123:641-644. [PMID: 36720253 DOI: 10.1055/a-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Christine Nilsson
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Syddanmark, Denmark.,Department of Clinical Research, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry/Centre for Clinical Proteomics, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Pernille Just Vinholt
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
6
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
7
|
Guéant JL, Feillet F. Inherited metabolic disorders beyond the new generation sequencing era: the need for in-depth cellular and molecular phenotyping. Hum Genet 2022; 141:1235-1237. [PMID: 35754062 DOI: 10.1007/s00439-022-02467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France. .,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France.
| | - François Feillet
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France.,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France
| |
Collapse
|
8
|
Garcinuño S, Gil-Etayo FJ, Mancebo E, López-Nevado M, Lalueza A, Díaz-Simón R, Pleguezuelo DE, Serrano M, Cabrera-Marante O, Allende LM, Paz-Artal E, Serrano A. Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. Int J Mol Sci 2022; 23:ijms23126577. [PMID: 35743021 PMCID: PMC9224310 DOI: 10.3390/ijms23126577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.
Collapse
Affiliation(s)
- Sara Garcinuño
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Esther Mancebo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Daniel Enrique Pleguezuelo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Oscar Cabrera-Marante
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-652-085-293
| |
Collapse
|