1
|
Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol 2021; 27:7909-7924. [PMID: 35046620 PMCID: PMC8678817 DOI: 10.3748/wjg.v27.i46.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) consists of thousands of small ganglia arranged in the submucosal and myenteric plexuses, which can be negatively affected by Crohn's disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs are complex and multifactorial disorders characterized by chronic and recurrent inflammation of the intestine, and the symptoms of IBDs may include abdominal pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a promising therapeutic target for IBDs, especially owing to its wide expression and, in the case of other purinergic receptors, in both human and model animal enteric cells. However, little is known about the actual involvement between the activation of the P2X7 receptor and the cascade of subsequent events and how all these activities associated with chemical signals interfere with the functionality of the affected or treated intestine. In this review, an integrated view is provided, correlating the structural organization of the ENS and the effects of IBDs, focusing on cellular constituents and how therapeutic approaches through the P2X7 receptor can assist in both protection from damage and tissue preservation.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 08000-000, Brazil
| |
Collapse
|
2
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
3
|
Palombit K, Mendes CE, Tavares-de-Lima W, Barreto-Chaves ML, Castelucci P. Blockage of the P2X7 Receptor Attenuates Harmful Changes Produced by Ischemia and Reperfusion in the Myenteric Plexus. Dig Dis Sci 2019; 64:1815-1829. [PMID: 30734238 DOI: 10.1007/s10620-019-05496-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Our work analyzed the effects of a P2X7 receptor antagonist, Brilliant Blue G (BBG), on rat ileum myenteric plexus following ischemia and reperfusion (ISR) induced by 45 min of ileal artery occlusion with an atraumatic vascular clamp with 24 h (ISR 24-h group) or 14 d of reperfusion (ISR 14-d group). MATERIAL AND METHODS Either BBG (50 mg/kg or 100 mg/kg, BBG50 or BBG100 groups) or saline (vehicle) was administered subcutaneously 1 h after ischemia in the ISR 24-h group or once daily for the 5 d after ischemia in the ISR 14-d group (n = 5 per group). We evaluated the neuronal density and profile area by examining the number of neutrophils in the intestinal layers, protein expression levels of the P2X7 receptor, intestinal motility and immunoreactivity for the P2X7 receptor, nitric oxide synthase, neurofilament-200, and choline acetyl transferase in myenteric neurons. RESULTS The neuronal density and profile area were restored by BBG following ISR. The ischemic groups showed alterations in P2X7 receptor protein expression and the number of neutrophils in the intestine and decreased intestinal motility, all of which were recovered by BBG treatment. CONCLUSION We concluded that ISR morphologically and functionally affected the intestine and that its effects were reversed by BBG treatment, suggesting the P2X7 receptor as a therapeutic target.
Collapse
Affiliation(s)
- Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
- Department of Morphology, Federal University of Piaui, Teresina, Brazil
| | - Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Luiza Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
4
|
Méndez-Barredo LH, Rodríguez-Meléndez JG, Gómez-Coronado KS, Guerrero-Alba R, Valdez-Morales EE, Espinosa-Luna R, Barajas-Espinosa A, Barajas-López C. Physiological Concentrations of Zinc Have Dual Effects on P2X Myenteric Receptors of Guinea Pig. Cell Mol Neurobiol 2018; 38:1439-1449. [PMID: 30109516 PMCID: PMC11481950 DOI: 10.1007/s10571-018-0612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
We, hereby, characterize the pharmacological effects of physiological concentrations of Zinc on native myenteric P2X receptors from guinea-pig small intestine and on P2X2 isoforms present in most myenteric neurons. This is the first study describing opposite effects of Zinc on these P2X receptors. It was not possible to determine whether both effects were concentration dependent, yet the inhibitory effect was mediated by competitive antagonism and was concentration dependent. The potentiating effect appears to be mediated by allosteric changes induced by Zinc on P2X myenteric channels, which is more frequently observed in myenteric neurons with low zinc concentrations. In P2X2-1 and P2X2-2 variants, the inhibitory effect is more common than in P2X myenteric channels. However, in the variants, the potentiatory effect is of equal magnitude as the inhibitory effect. Inhibitory and potentiatory effects are likely mediated by different binding sites that appear to be present on both P2X2 variants. In conclusion, in myenteric native P2X receptors, Zinc has quantitatively different pharmacological effects compared to those observed on homomeric channels: P2X2-1 and P2X2-2. Potentiatory and inhibitory Zinc effects upon these receptors are mediated by two different binding sites. All our data suggest that myenteric P2X receptors have a more complex pharmacology than those of the recombinant P2X2 receptors, which is likely related to other subunits known to be expressed in myenteric neurons. Because these dual effects occur at Zinc physiological concentrations, we suggest that they could be involved in physiological and pathological processes.
Collapse
Affiliation(s)
- Liliana H Méndez-Barredo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Jessica G Rodríguez-Meléndez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Eduardo E Valdez-Morales
- Cátedra CONACyT, Departamento de Cirugía, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Alma Barajas-Espinosa
- Cátedra CONACyT, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
5
|
Ji R, Zhu J, Wang D, Sui QQ, Knight GE, Burnstock G, Yuan H, Xiang Z. Expression of P2X1 receptors in somatostatin-containing cells in mouse gastrointestinal tract and pancreatic islets of both mouse and human. Purinergic Signal 2018; 14:285-298. [PMID: 29974392 DOI: 10.1007/s11302-018-9615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
With immunohistochemical and Western blot techniques, P2X1 receptors were detected in the whole mouse gastrointestinal tract and pancreatic islets of mouse and human. (1) δ Cells containing somatostatin (SOM) in the stomach corpus, small intestines, distal colon, pancreatic islets of both mouse and human express P2X1 receptors; (2) strong immunofluorescence of P2X1 receptors was detected in smooth muscle fibers and capillary networks of the villus core of mouse intestine; and (3) P2X1 receptor-immunoreactive neurons were also detected widely in both mouse myenteric and submucosal plexuses, all of which express SOM. The present data implies that ATP via P2X1 receptors is involved in SOM release from pancreatic δ cells, enteric neurons, and capillary networks in villi.
Collapse
Affiliation(s)
- Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiao Zhu
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Dan Wang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qian-Qian Sui
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
6
|
SchÄfer BT, Silveira MP, Palombit K, Mendes CE, Watanabe IS, Miglino MA, Castelucci P. Morphological Characterization of the Myenteric Plexus of the Ileum and Distal colon of Dogs Affected by Muscular Dystrophy. Anat Rec (Hoboken) 2017; 301:673-685. [DOI: 10.1002/ar.23708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Bárbara Tavares SchÄfer
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science; University of São Paulo; Brazil
| | - Mariana Póvoa Silveira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science; University of São Paulo; Brazil
| | - Kelly Palombit
- Department of Anatomy/Biomedical Sciences Institute; University of São Paulo; Brazil
- Deparment of Morphology; University Federal do Piaui; Teresina-PI Brazil
| | | | - Ii Sei Watanabe
- Department of Anatomy/Biomedical Sciences Institute; University of São Paulo; Brazil
| | - Maria Angélica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science; University of São Paulo; Brazil
| | - Patricia Castelucci
- Department of Anatomy/Biomedical Sciences Institute; University of São Paulo; Brazil
| |
Collapse
|
7
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
8
|
da Silva MV, Marosti AR, Mendes CE, Palombit K, Castelucci P. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis. Acta Histochem 2017; 119:481-494. [PMID: 28501138 DOI: 10.1016/j.acthis.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor.
Collapse
Affiliation(s)
- Marcos Vinícius da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil; University Federal of Sergipe, Brazil
| | - Aline Rosa Marosti
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil; Department of Morphology, University Federal of Piaui, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
9
|
Guo W, Sui QQ, Gao XF, Feng JF, Zhu J, He C, Knight GE, Burnstock G, Xiang Z. Co-localization of Pirt protein and P2X2 receptors in the mouse enteric nervous system. Purinergic Signal 2016; 12:489-96. [PMID: 27105971 PMCID: PMC5023630 DOI: 10.1007/s11302-016-9515-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/17/2016] [Indexed: 01/10/2023] Open
Abstract
P2X2 receptors, with other P2X receptor subtypes, have an important role mediating synaptic transmission in regulating the functions of the gastrointestinal tract. Our recent work has found a new regulator of P2X receptor function, called phosphoinositide-interacting regulator of transient receptor potential channels (Pirt). In the present work, we have shown that Pirt immunoreactivity was localized in nerve cell bodies and nerve fibers in the myenteric plexus of the stomach, ileum, proximal, and distal colon and in the submucosal plexus of the jejunum, ileum, proximal, and distal colon. Almost all the Pirt-immunoreactive (ir) neurons were also P2X2-ir, and co-immunoprecipitation experiments have shown that Pirt co-precipitated with the anti-P2X2 antibody. This work provides detailed information about the expression of Pirt in the gut and its co-localization with P2X2, indicating its potential role in influencing P2X2 receptor function.
Collapse
Affiliation(s)
- Wei Guo
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qian-Qian Sui
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Fei Gao
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ji-Feng Feng
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jiao Zhu
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Cheng He
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
10
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
11
|
King BF. Purinergic signalling in the enteric nervous system (An overview of current perspectives). Auton Neurosci 2015; 191:141-7. [PMID: 26049261 DOI: 10.1016/j.autneu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Department of Neuroscience, Physiology and Pharmacology (NPP), Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
| |
Collapse
|
12
|
Mizuno MS, Crisma AR, Borelli P, Schäfer BT, Silveira MP, Castelucci P. Distribution of the P2X2 receptor and chemical coding in ileal enteric neurons of obese male mice (ob/ob). World J Gastroenterol 2014; 20:13911-13919. [PMID: 25320527 PMCID: PMC4194573 DOI: 10.3748/wjg.v20.i38.13911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the colocalization, density and profile of neuronal areas of enteric neurons in the ileum of male obese mice. METHODS The small intestinal samples of male mice in an obese group (OG) (C57BL/6J ob/ob) and a control group (CG) (+/+) were used. The tissues were analyzed using a double immunostaining technique for immunoreactivity (ir) of the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT) and calretinin (Calr). Also, we investigated the density and profile of neuronal areas of the NOS-, ChAT- and Calr-ir neurons in the myenteric plexus. Myenteric neurons were labeled using an NADH-diaphorase histochemical staining method. RESULTS The analysis demonstrated that the P2X2 receptor was expressed in the cytoplasm and in the nuclear and cytoplasmic membranes only in the CG. Neuronal density values (neuron/cm(2)) decreased 31% (CG: 6579 ± 837; OG: 4556 ± 407) and 16.5% (CG: 7796 ± 528; OG: 6513 ± 610) in the NOS-ir and calretinin-ir neurons in the OG, respectively (P < 0.05). Density of ChAT-ir (CG: 6200 ± 310; OG: 8125 ± 749) neurons significantly increased 31% in the OG (P < 0.05). Neuron size studies demonstrated that NOS, ChAT, and Calr-ir neurons did not differ significantly between the CG and OG groups. The examination of NADH-diaphorase-positive myenteric neurons revealed an overall similarity between the OG and CG. CONCLUSION Obesity may exert its effects by promoting a decrease in P2X2 receptor expression and modifications in the density of the NOS-ir, ChAT-ir and CalR-ir myenteric neurons.
Collapse
|
13
|
da Silva MV, Marosti AR, Mendes CE, Palombit K, Castelucci P. Differential effects of experimental ulcerative colitis on P2X7 receptor expression in enteric neurons. Histochem Cell Biol 2014; 143:171-84. [PMID: 25201348 DOI: 10.1007/s00418-014-1270-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Abstract
The digestive tracts of ulcerative colitis and Crohn's disease patients present with pathophysiological processes and intestinal necrosis. This study examined the P2X7 receptor and changes in the distal colon in enteric neurons of rats with experimental ulcerative colitis. The analysis was performed in the distal colons of rats with ulcerative colitis induced by the administration of 2,4,6-trinitrobenzene sulfonic acid (colitis group). The survival time after colitis induction was 24 h. The treated animals were compared to sham rats injected with phosphate-buffered saline and to animals with no intervention (control group). Tissues were prepared for immunohistochemical double-staining methods to examine P2X7 receptor, choline acetyltransferase (ChAT), calbindin, calretinin, anti-HuC/D (pan-neuronal) and S100β (pan-glial). The colocalization of the P2X7 receptor-immunoreactive (IR) cells was observed in the myenteric plexus with nitric oxide synthase (NOS)-, ChAT-,calbindin-, calretinin- and HuC/D-IR neurons and S100β-IR cells in the control, sham and colitis groups. The neuronal density (cell bodies/cm(2)) decreased in the myenteric plexus by 11, 18, 34, 22 and 60% in the P2X7 receptor, NOS-, ChAT-, calbindin- and calretinin-IR neurons, respectively. In addition, the densities (cell bodies/cm(2)) of HuC/D-IR neurons and S100β-IR enteric glial cells decreased by 33 and 29%, respectively. The profile areas were reduced by 6.8 and 21% in NOS- and ChAT-IR neurons, respectively. There was also a 20% increase of calbindin-IR neurons. Morphological changes were observed, such as increased neutrophils, disintegration of the intestinal epithelium and goblet cells and decreased collagen. This study demonstrated that colitis differentially affects P2X7 receptor-expressing enteric neurons based on their chemical codes and may cause changes in morphology and motility.
Collapse
Affiliation(s)
- Marcos Vinícius da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | | | | |
Collapse
|
14
|
Loera-Valencia R, Jiménez-Vargas NN, Villalobos EC, Juárez EH, Lomas-Ramos TL, Espinosa-Luna R, Montaño LM, Huizinga JD, Barajas-López C. Expression of P2X3 and P2X 5 myenteric receptors varies during the intestinal postnatal development in the guinea pig. Cell Mol Neurobiol 2014; 34:727-36. [PMID: 24723030 PMCID: PMC11488934 DOI: 10.1007/s10571-014-0055-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
P2X3 receptor expression in various tissues appears to be modulated by age. In the present study, we used single cell RT-PCR to determine the number of P2X3 positive myenteric neurons at different stages of guinea pig postnatal development, and we tested if similar changes also occur to other myenteric P2X receptors. Moreover, we carried out whole-cell recordings using Patch Clamp techniques to determine possible changes in P2X receptors sensitivity to ATP and α,β-methylene ATP (α,β-meATP) between newborn and adult animals. Our data indicate that P2X3 subunit transcripts are present in a larger number of myenteric neurons from newborn guinea pigs whereas P2X5 mRNA is found more frequently in adults. Expression of P2X2 and P2X4 transcripts does not change during postnatal development. In newborn animals, virtually all neurons expressing P2X3 also expressed P2X2 transcripts. This is important because these two subunits are known to form heteromeric channels. ATP potency to activate P2X receptors in neurons of both newborn and adult animals was the same. α,β-meATP, a known P2X3 receptor agonist, induces only a marginal current despite the fact of the higher presence of P2X3 subunits in newborns. These findings imply that P2X3 subunits are mainly forming heteromeric, α,β-meATP insensitive channels perhaps because P2X3 contributes with only one subunit to the heterotrimers while the other subunits could be P2X2, P2X4, or P2X5.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Néstor N. Jiménez-Vargas
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Egina C. Villalobos
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Esri H. Juárez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Telma Liliana Lomas-Ramos
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina Universidad Nacional Autónoma de México, México, DF Mexico
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| |
Collapse
|
15
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
16
|
Girotti PA, Misawa R, Palombit K, Mendes CE, Bittencourt JC, Castelucci P. Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons. Cell Tissue Res 2013; 353:367-80. [PMID: 23644765 DOI: 10.1007/s00441-013-1620-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/14/2012] [Indexed: 02/07/2023]
Abstract
The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.
Collapse
Affiliation(s)
- Priscila Azevedo Girotti
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 Cidade Universitária, 05508-000, São Paulo, CEP, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nieto-Pescador MG, Guerrero-Alba R, Valdez-Morales E, Espinosa-Luna R, Jiménez-Vargas N, Liñan-Rico Andrómeda A, Ramos-Lomas TL, Díaz-Hernández Verónica V, Montaño LM, Barajas-López C. P2X4 subunits are part of P2X native channels in murine myenteric neurons. Eur J Pharmacol 2013; 709:93-102. [PMID: 23567069 DOI: 10.1016/j.ejphar.2013.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to investigate if P2X4 receptors are expressed in murine myenteric neurons and if these receptors contribute to form functional channels in the neuronal membrane by using molecular and electrophysiological techniques. The whole-cell recording technique was used to measure membrane currents induced by ATP (I(ATP)) in myenteric neurons. Compared with recombinant P2X4 receptor-channels (reported by others in a previous study), native myenteric P2X receptors have a relative lower sensitivity for ATP (EC₅₀=102 µM) and α,β methylene ATP (not effect at 30 or 100 µM). BzATP was a weak agonist for native P2X receptors. KN-62 had no effect on myenteric P2X channels whereas PPADS (IC₅₀=0.54 µM) or suramin (IC₅₀=134 µM) were more potent antagonists than on P2X4 homomeric channels. I(ATP) were potentiated by ivermectin (effect that is specific on P2X4 receptors) and zinc. Western blotting shows the presence of P2X4 protein and RT-PCR the corresponding mRNA transcript in the small intestine. Immunoreactivity for P2X4 receptors was found in most myenteric neurons in culture. Single-cell RT-PCR shows the presence of P2X4 mRNA in 90% of myenteric neurons. Our results indicate that P2X4 receptors are expressed in the majority of myenteric neurons, contribute to the membrane currents activated by ATP, and because most properties of I(ATP) does not correspond to P2X4 homomeric channels it is proposed that P2X4 are forming heteromeric channels in these neurons. P2X4 subunits have a widespread distribution within the myenteric plexus and would be expected to play an important role in cell signaling.
Collapse
Affiliation(s)
- María G Nieto-Pescador
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, SLP 78216, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
20
|
Mizuno MS, Crisma AR, Borelli P, Castelucci P. Expression of the P2X₂ receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol 2012; 18:4693-4703. [PMID: 23002338 PMCID: PMC3442207 DOI: 10.3748/wjg.v18.i34.4693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/21/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS The study examined the distribution of the P2X₂ receptor (P2X₂R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X₂R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm²) and area profile (μm²) of P2X₂R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X₂R, nNOS, ChAT and CalR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X₂R-IR was observed to co-localize 100% with that for nNOS, ChAT and CalR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm²) of P2X₂R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CalR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the cell body profile area (μm²) of nNOS-IR, ChAT-IR and CalR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls. Staining for NADH diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NADH-diaphorase positive neurons in the myenteric ganglia revealed an overall similarity between the two groups. CONCLUSION We demonstrate increases in P2X₂R expression and alterations in nNOS, ChAT and CalR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls.
Collapse
|
21
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
|
23
|
Paulino AS, Palombit K, Cavriani G, Tavares-de-Lima W, Mizuno MS, Marosti AR, da Silva MV, Girotti PA, Liberti EA, Castelucci P. Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci 2011; 56:2262-2275. [PMID: 21409380 DOI: 10.1007/s10620-011-1588-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 01/17/2011] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X2-immunoreactive (IR) neurons of the rat ileum. METHODS The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. RESULTS Following I/R-i, we observed a decrease in P2X2 receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X2 receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X2 and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X2 receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X2 receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X2-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X2-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. CONCLUSIONS These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X2 receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X2-IR enteric neurons that could result in alterations in intestinal motility.
Collapse
Affiliation(s)
- Ariane Silva Paulino
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, CEP 05508-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P. Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol 2010; 16:3651-3663. [PMID: 20677337 PMCID: PMC2915425 DOI: 10.3748/wjg.v16.i29.3651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of malnutrition and re-feeding on the P2X(2) receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS We analyzed the co-localization, numbers and sizes of P2X(2)-expressing neurons in relation to NOS-immunoreactive (IR), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X(2) receptor, NOS, ChAT, calbindin and calretinin. RESULTS We found similar P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X(2) receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindin-IR neurons were nearly all immunoreactive for the P2X(2) receptor. In the myenteric plexus, there was a 19% increase in numbers per cm(2) for P2X(2) receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION This work demonstrates that expression of the P2X(2) receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X(2) receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats.
Collapse
|
25
|
Decker DA, Galligan JJ. Molecular mechanisms of cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Neurogastroenterol Motil 2010; 22:901-8, e235. [PMID: 20426799 PMCID: PMC2911505 DOI: 10.1111/j.1365-2982.2010.01505.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND P2X(2) and nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic excitation in the enteric nervous system. P2X receptors and nAChRs are functionally linked. This study examined the mechanisms responsible for interactions between P2X2 and alpha3beta4subunit-containing nAChRs. METHODS The function of P2X2 and alpha3beta4 nAChRs expressed by HEK-293 cells and guinea pig ileum myenteric neurons in culture was studied using whole-cell patch clamp techniques. KEY RESULTS In HEK-293 cells expressing alpha3beta4 nAChRs and P2X2 receptors, co-application of ATP and acetylcholine caused inward currents that were 56 +/- 7% of the current that should occur if these channels functioned independently (P < 0.05, n = 9); we call this interaction cross-inhibition. Cross-inhibition did not occur in HEK-293 cells expressing alpha3beta4 nAChRs and a C-terminal tail truncated P2X2 receptor (P2X2TR) (P > 0.05, n = 8). Intracellular application of the C-terminal tail of the P2X2 receptor blocked nAChR-P2X receptor cross-inhibition in HEK-293 cells and myenteric neurons. In the absence of ATP, P2X2 receptors constitutively inhibited nAChR currents in HEK-293 cells expressing both receptors. Constitutive inhibition did not occur in HEK-293 cells expressing alpha3beta4 nAChRs transfected with P2X2TR. Currents caused by low (< or =30 micromol L(-1)), but not high (> =100 micromol L(-1)) concentrations of ATP in cells expressing P2X2 receptors were inhibited by co-expression with alpha3beta4 nAChRs. CONCLUSIONS & INFERENCES The C-terminal tail of P2X2 receptors mediates cross-inhibition between alpha3beta4 nAChR-P2X2 receptors. The closed state of P2X2 receptors and nAChRs can also cause cross-inhibition. These interactions may modulate transmission at enteric synapses that use ATP and acetylcholine as co-transmitters.
Collapse
Affiliation(s)
- D A Decker
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
26
|
Devries MP, Vessalo M, Galligan JJ. Deletion of P2X2 and P2X3 receptor subunits does not alter motility of the mouse colon. Front Neurosci 2010; 4:22. [PMID: 20582262 PMCID: PMC2858605 DOI: 10.3389/fnent.2010.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/04/2010] [Indexed: 12/16/2022] Open
Abstract
Purinergic P2X receptors contribute to neurotransmission in the gut. P2X receptors are ligand-gated cation channels that mediate synaptic excitation in subsets of enteric neurons. The present study evaluated colonic motility in vitro and in vivo in wild type (WT) and P2X2 and P2X3 subunit knockout (KO) mice. The muscarinic receptor agonist, bethanechol (0.3–3 μM), caused similar contractions of the longitudinal muscle in colon segments from WT, P2X2 and P2X3 subunit KO mice. Nicotine (1–300 μM), acting at neuronal nicotinic receptors, caused similar longitudinal muscle relaxations in colonic segments from WT and P2X2 and P2X3 subunit KO mice. Nicotine-induced relaxations were inhibited by nitro-l-arginine (NLA, 100 μM) and apamin (0.1 μM) which block inhibitory neuromuscular transmission. ATP (1–1000 μM) caused contractions only in the presence of NLA and apamin. ATP-induced contractions were similar in colon segments from WT, P2X2 and P2X3 KO mice. The mouse colon generates spontaneous migrating motor complexes (MMCs) in vitro. The MMC frequency was higher in P2X2 KO compared to WT tissues; other parameters of the MMC were similar in colon segments from WT, P2X2 and P2X3 KO mice. 5-Hydroxytryptophan-induced fecal output was similar in WT, P2X2 and P2X3 KO mice. These data indicate that nicotinic receptors are located predominately on inhibitory motor neurons supplying the longitudinal muscle in the mouse colon. P2X2 or P2X3 subunit containing receptors are not localized to motor neurons supplying the longitudinal muscle. Synaptic transmission mediated by P2X2 or P2X3 subunit containing receptors is not required for propulsive motility in the mouse colon.
Collapse
Affiliation(s)
- Matthew P Devries
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
27
|
Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 2009; 133:177-88. [PMID: 19946698 DOI: 10.1007/s00418-009-0659-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2009] [Indexed: 12/13/2022]
Abstract
Expression of P2X(4) and P2X(6) receptor subunits in the gastrointestinal tract of the rat was studied with double-labeling fluorescence immunohistochemistry. The results showed that P2X(6) receptors were expressed widely in the submucosal and myenteric plexuses. In the myenteric plexus, P2X(6) receptors were expressed mainly in large size neurons which resembled Dogiel type II neurons. These P2X(6) receptor-immunoreactive (ir) neurons also expressed calbindin 28K, calretinin and neuronal nuclei (NeuN), proteins that are markers of intrinsic sensory neurons. In the submucosal plexus, all the calbindin 28K, calretinin and NeuN-ir cells were immunoreactive for P2X(6) receptors. P2X(6) receptors do not form homomultimers, but rather heteromultimers with either P2X(2) or P2X(4) receptors. P2X(4) receptors were not expressed in neurons, but were expressed in macrophages of the rat gastrointestinal tract. These data indicate that P2X(6) receptors are mainly expressed on intrinsic sensory neurons and that ATP, via P2X(6) receptors probably in heteromeric combination with P2X(2) receptors, may be involved in regulating the physiological functions of these neurons.
Collapse
|
28
|
Two suramin binding sites are present in guinea pig but only one in murine native P2X myenteric receptors. Eur J Pharmacol 2009; 626:179-85. [PMID: 19818756 DOI: 10.1016/j.ejphar.2009.09.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/08/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
Abstract
Whole-cell patch clamp recordings were used to characterise the physiological and pharmacological properties of P2X receptors of mouse and guinea pig myenteric neurons from the small intestine. ATP application induced a rapid inward current in 95% of recorded neurons of both species when were voltage clamped at -60 mV. Concentration-response curves for ATP (1-3000 microM) yielded EC(50) values of 114 and 115 microM for mouse and guinea pig myenteric neurons, respectively, with a Hill coefficient value of 1.02 and 0.79, respectively, which were not significantly different of unity. alpha,beta-methylene ATP (100 microM) was virtually inactive in both species. Pyridoxalphophate-6-azophenyl-2',4'-disulphonic acid (0.01-30 microM) inhibited the ATP-induced currents (I(ATP)) with a different potency; being the IC(50) 0.6 and 1.8 microM in mouse and guinea pig, respectively. In mouse myenteric neurons, I(ATP) were inhibited by suramin whereas in guinea pig neurons we observed two effects, potentiation and inhibition of these currents. On guinea pig, both effects of suramin had different recovering kinetics and concentration dependency, indicating that they are mediated by at least two different binding sites. Our observations indicate that myenteric P2X receptors in these two species have different pharmacological properties.
Collapse
|
29
|
Rybaczyk L, Rozmiarek A, Circle K, Grants I, Needleman B, Wunderlich JE, Huang K, Christofi FL. New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 2009; 15:971-84. [PMID: 19253308 PMCID: PMC2697273 DOI: 10.1002/ibd.20893] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Expression of purine genes is modulated by inflammation or experimental colitis and altered expression leads to disrupted gut function. We studied purine gene dysregulation profiles in inflammatory bowel disease (IBD) and determined whether they can distinguish between Crohn's disease (CD) and ulcerative colitis (UC) using Pathway Analysis and a new Comparative Analysis of Gene Expression and Selection (CAGES) method. METHODS Raw datasets for 22 purine genes and 36 probe-sets from National Center for Biotechnology Information (NCBI) GEO (Gene Expression Omnibus) (http://www.ncbi.nlm.nih.gov/projects/geo/) were analyzed by National Cancer Institute (NCI) Biological Resources Branch (BRB) array tools for random-variance of multiple/36 t-tests in colonic mucosal biopsies or peripheral blood mononuclear cells (PBMCs) of CD, UC or control subjects. Dysregulation occurs in 59% of purine genes in IBD including ADORA3, CD73, ADORA2A, ADORA2B, ADAR, AMPD2, AMPD3, DPP4, P2RY5, P2RY6, P2RY13, P2RY14, and P2RX5. RESULTS In CD biopsies, expression of ADORA3, AMPD3, P2RY13, and P2RY5 were negatively correlated with acute inflammatory score, Crohn's Disease Activity Index (CDAI) or disease chronicity; P2RY14 was positively correlated in UC. In mucosal biopsies or PBMCs, CD and UC were distinguished by unique patterns of dysregulation (up- or downregulation) in purine genes. Purine gene dysregulation differs between PBMCs and biopsies and possibly between sexes for each disease. Ingenuity Pathway Analysis (IPA) revealed significant associations between alterations in the expression of CD73 (upregulation) or ADORA3 (downregulation) and inflammatory or purine genes (<or=10% of 57 genes) as well as G-protein coupled receptors, cAMP-dependent, and inflammatory pathways; IPA distinguishes CD from UC. CONCLUSION CAGES and Pathway Analysis provided novel evidence that UC and CD have distinct purine gene dysregulation signatures in association with inflammation, cAMP, or other signaling pathways. Disease-specific purine gene signature profiles and pathway associations may be of therapeutic, diagnostic, and functional relevance.
Collapse
Affiliation(s)
- Leszek Rybaczyk
- Dept of Bioinformatics, The Ohio State University, Columbus, Ohio, 43210
| | - Andrew Rozmiarek
- Dept of Anesthesiology, The Ohio State University, Columbus, Ohio, 43210
| | - Kristin Circle
- Dept of Bioinformatics, The Ohio State University, Columbus, Ohio, 43210
| | - Iveta Grants
- Dept of Anesthesiology, The Ohio State University, Columbus, Ohio, 43210
| | | | - Jacqueline E Wunderlich
- Dept of Anesthesiology, The Ohio State University, Columbus, Ohio, 43210,Dept of Surgery, The Ohio State University, Columbus, Ohio, 43210
| | - Kun Huang
- Dept of Bioinformatics, The Ohio State University, Columbus, Ohio, 43210
| | - Fievos L Christofi
- Dept of Anesthesiology, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
30
|
Ren J, Bertrand PP. Purinergic receptors and synaptic transmission in enteric neurons. Purinergic Signal 2008; 4:255-66. [PMID: 18368519 PMCID: PMC2486344 DOI: 10.1007/s11302-007-9088-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/06/2007] [Indexed: 12/16/2022] Open
Abstract
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.
Collapse
Affiliation(s)
- Jianhua Ren
- Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Paul P. Bertrand
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557 USA
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
31
|
Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z. Expression of P2X5 receptors in the mouse CNS. Neuroscience 2008; 156:673-92. [PMID: 18773945 DOI: 10.1016/j.neuroscience.2008.07.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/16/2008] [Accepted: 07/26/2008] [Indexed: 11/16/2022]
Abstract
P2X receptors are ATP-gated cationic channels composed of seven known subunits (P2X1-7) which are involved in different functions in neural tissue. The present study investigates the P2X5 receptor expression pattern in the mouse CNS using immunohistochemistry and in situ hybridization histochemistry. The specificity of the immunostaining has been verified by pre-absorption, Western blot and in situ hybridization methods. Heavy P2X5 receptor immunostaining was observed in the mitral cells of the olfactory bulb; cerebral cortex; globus pallidum, anterior cortical amygdaloid nucleus, amygdalohippocampal area of subcortical telencephalon; anterior nuclei, anteroventral nucleus, ventrolateral nucleus of thalamus; supraoptic nucleus, ventromedial nucleus, arcuate nucleus of hypothalamus; substantia nigra of midbrain; pontine nuclei, mesencephalic trigeminal nucleus, motor trigeminal nucleus, ambiguous nucleus, inferior olive, hypoglossal nucleus, dorsal motor vagus nucleus, area postrema of hindbrain; Purkinje cells of cerebellum; and spinal cord. The identification of extensive P2X5 receptor immunoreactivity and mRNA distribution within the CNS of the mouse demonstrated here is consistent with a role for extracellular ATP acting as a fast neurotransmitter.
Collapse
Affiliation(s)
- W Guo
- Department of Neurobiology, Second Military Medical University 200433 Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Purinergic receptors and gastrointestinal secretomotor function. Purinergic Signal 2008; 4:213-36. [PMID: 18604596 DOI: 10.1007/s11302-008-9104-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 04/07/2008] [Indexed: 02/06/2023] Open
Abstract
Secretomotor reflexes in the gastrointestinal (GI) tract are important in the lubrication and movement of digested products, absorption of nutrients, or the diarrhea that occurs in diseases to flush out unwanted microbes. Mechanical or chemical stimulation of mucosal sensory enterochromaffin (EC) cells triggers release of serotonin (5-HT) (among other mediators) and initiates local reflexes by activating intrinsic primary afferent neurons of the submucous plexus. Signals are conveyed to interneurons or secretomotor neurons to stimulate chloride and fluid secretion. Inputs from myenteric neurons modulate secretory rates and reflexes, and special neural circuits exist to coordinate secretion with motility. Cellular components of secretomotor reflexes variably express purinergic receptors for adenosine (A1, A2a, A2b, or A3 receptors) or the nucleotides adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP), or uridine diphosphate (UDP) (P2X(1-7), P2Y(2), P2Y(4), P2Y(6), P2Y(12) receptors). This review focuses on the emerging concepts in our understanding of purinergic regulation at these receptors, and in particular of mechanosensory reflexes. Purinergic inhibitory (A(1), A(3), P2Y(12)) or excitatory (A(2), P2Y(1)) receptors modulate mechanosensitive 5-HT release. Excitatory (P2Y(1), other P2Y, P2X) or inhibitory (A(1), A(3)) receptors are involved in mechanically evoked secretory reflexes or "neurogenic diarrhea." Distinct neural (pre- or postsynaptic) and non-neural distribution profiles of P2X(2), P2X(3), P2X(5), P2Y(1), P2Y(2), P2Y(4), P2Y(6), or P2Y(12) receptors, and for some their effects on neurotransmission, suggests their role in GI secretomotor function. Luminal A(2b), P2Y(2), P2Y(4), and P2Y(6) receptors are involved in fluid and Cl(-), HCO(3) (-), K(+), or mucin secretion. Abnormal receptor expression in GI diseases may be of clinical relevance. Adenosine A(2a) or A(3) receptors are emerging as therapeutic targets in inflammatory bowel diseases (IBD) and gastroprotection; they can also prevent purinergic receptor abnormalities and diarrhea. Purines are emerging as fundamental regulators of enteric secretomotor reflexes in health and disease.
Collapse
|
33
|
Abstract
Although the concept of purinergic signalling arose from experiments designed to find the identity of the non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter in the gut, it has taken many years for the more general importance of the various roles of ATP as a physiological messenger in the gut to be recognized. Firstly, vasoactive intestitial polypeptide (VIP) and later nitric oxide (NO) were considered the NANC transmitter and it was only later, after the concept of cotransmission was established, that ATP, NO and VIP were recognized as cotransmitters in NANC nerves, although the proportions vary in different gut regions. Recently, many purinoceptor subtypes have been identified on myenteric, submucosal motor, sensory and interneurons involved in synaptic neurotransmission and neuromodulation and reflex activity of several kinds, including ascending excitatory and descending inhibitory reflex pathways. Nucleotide receptors have been shown to be expressed on enteric glial cells and interstitial cells of Cajal. Purinergic mechanosensory transduction, involving release of ATP from mucosal epithelial cells during distension to stimulate subepithelial nerve endings of intrinsic and extrinsic sensory nerves to modulate peristalsis and initiate nociception respectively, is attracting current attention. Exciting new areas of interest about purinergic signalling in the gut include: involvement of purines in development, ageing and regeneration, including the role of stem cells; studies of the involvement of nucleotides in the activity of the gut of invertebrates and lower vertebrates; and the pathophysiology of enteric purinergic signalling in diseases including irritable bowel syndrome, postoperative ileus, oesophageal reflux, constipation, diarrhoea, diabetes, Chaga's and Hirschprung's disease.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
34
|
McDonnell B, Hamilton R, Fong M, Ward SM, Keef KD. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1041-51. [PMID: 18308858 DOI: 10.1152/ajpgi.00356.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.
Collapse
Affiliation(s)
- Bronagh McDonnell
- Dept. of Physiology and Cell Biology, Univ. of Nevada, Reno, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
35
|
Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV. Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G401-10. [PMID: 18063703 DOI: 10.1152/ajpgi.00454.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
36
|
Florenzano F, Viscomi MT, Amadio S, D'Ambrosi N, Volonté C, Molinari M. Do ATP and NO interact in the CNS? Prog Neurobiol 2007; 84:40-56. [PMID: 18036717 DOI: 10.1016/j.pneurobio.2007.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/01/2007] [Accepted: 10/05/2007] [Indexed: 02/08/2023]
Abstract
Enzymatically derived NO and extracellular ATP are receiving greater attention due to their role as messengers in the CNS during different physiological and pathological processes. Ionotropic (P2XR) and metabotropic (P2YR) purinergic receptors mediate ATP effects and are present throughout the body. Particularly P2XR are crucial for brain plasticity mechanisms, and are involved in the pathogenesis of different CNS illnesses. NO does not have a specific receptor and its actions are directly dependent on the production on demand by different nitric oxide synthase isoforms. NO synthesizing enzymes are present virtually in all tissues, and NO influences multifarious physiological and pathological functions. Interestingly, various are the tissue and organs modulated by both ATP and NO, such as the immune, brain and vascular systems. Moreover, direct interactions between purinergic and nitrergic mechanisms outside the CNS are well documented, with several studies also indicating that ATP and NO do participate to the same CNS functions. In the past few years, further experimental evidence supported the physiological and pathological relevance of ATP and NO direct interactions in the CNS. The aim of the present review is to provide an account of the available information on the interplay between purinergic and nitrergic systems, focussing on the CNS. The already established relevance of ATP and NO in different pathological processes would predict that the knowledge of ATP/NO cross-talk mechanisms would support pharmacological approaches toward the development of novel ATP/NO combined pharmacological agents.
Collapse
Affiliation(s)
- F Florenzano
- Experimental Neurorehabilitation Laboratory, I.R.C.C.S. Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2007; 4:197-212. [PMID: 18368521 DOI: 10.1007/s11302-007-9081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 02/08/2023] Open
Abstract
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,
| |
Collapse
|
38
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
39
|
Van Nassauw L, Adriaensen D, Timmermans JP. The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Auton Neurosci 2006; 133:91-103. [PMID: 17169619 DOI: 10.1016/j.autneu.2006.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/26/2006] [Accepted: 10/10/2006] [Indexed: 12/12/2022]
Abstract
Normal or disordered behaviour of the gastrointestinal tract is determined by a complex interplay between the epithelial barrier, immune cells, blood vessels, smooth muscle and intramurally located nerve elements. Mucosal mast cells (MMCs), which are able to detect noxious and antigenic threats and to generate or amplify signals to the other cells, are assigned a rather central position in this complex network. Signal input from MMCs to intrinsic enteric neurons is particularly crucial, because the enteric nervous system fulfils a pivotal role in the control of gastrointestinal functions. Activated enteric neurons are able to generate an alarm program involving alterations in motility and secretion. MMC signalling to extrinsic nerve fibres takes part in pathways generating visceral pain or extrinsic reflexes contributing to the disturbed motor and secretory function. Morphological and functional studies, especially studies concerning physiological stress, have provided evidence that, apart from the interaction between the enteric nervous system and MMCs, there is also a functional communication between the central nervous system and these mast cells. Psychological factors trigger neuronal pathways, which directly or indirectly affect MMCs. Further basic and clinical research will be needed to clarify in more detail whether basic patterns of this type of interactions are conserved between species including humans.
Collapse
Affiliation(s)
- Luc Van Nassauw
- Research Group Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Belgium
| | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Our aim was to provide a synopsis of how the field of enteric neurobiology has advanced during the past year. RECENT FINDINGS With such a large number of studies to choose from and given our emphasis in last year's issue on developmental aspects of the enteric nervous system, we have focused on several key themes reflecting the current interest in the way the enteric nervous system is altered in disease. SUMMARY The new basic science information gathered during the past year provides insight into pathophysiological processes and will pave the way for improved understanding of both organic and 'functional' gastrointestinal disorders.
Collapse
Affiliation(s)
- David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|