1
|
Singh A, Gogia N, Chang CY, Sun YH. Proximal fate marker homothorax marks the lateral extension of stalk-eyed fly Cyrtodopsis whitei. Genesis 2019; 57:e23309. [PMID: 31162816 DOI: 10.1002/dvg.23309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/08/2022]
Abstract
The placement of eyes on insect head is an important evolutionary trait. The stalk-eyed fly, Cyrtodopsis whitei, exhibits a hypercephaly phenotype where compound eyes are located on lateral extension from the head while the antennal segments are placed inwardly on this stalk. This stalk-eyed phenotype is characteristic of the family Diopsidae in the Diptera order and dramatically deviates from other dipterans, such as Drosophila. Like other insects, the adult eye and antenna of stalk-eyed fly develop from a complex eye-antennal imaginal disc. We analyzed the markers involved in proximo-distal (PD) axis of the developing eye imaginal disc of the stalk-eyed flies. We used homothorax (hth) and distalless (dll), two highly conserved genes as the marker for proximal and distal fate, respectively. We found that lateral extensions between eye and antennal field of the stalk-eyed fly's eye-antennal imaginal disc exhibit robust Hth expression. Hth marks the head specific fate in the eye- and proximal fate in the antenna-disc. Thus, the proximal fate marker Hth expression evolves in the stalk-eyed flies to generate lateral extensions for the placement of the eye on the head. Moreover, during pupal eye metamorphosis, the lateral extension folds back on itself to place the antenna inside and the adult compound eye on the distal tip. Interestingly, the compound eye in other insects does not have a prominent PD axis as observed in the stalk-eyed fly.
Collapse
Affiliation(s)
- Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio.,Premedical Program, University of Dayton, Dayton, Ohio.,Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio.,The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio.,Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, Ohio
| | - Chia-Yu Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, Ding S, Li J. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteomics 2015; 133:93-99. [PMID: 26710722 DOI: 10.1016/j.jprot.2015.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1h, 6h, 1d, 3d and 7d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Meng Liu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jun Gao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Warren I, Smith H. Stalk-eyed flies (Diopsidae): modelling the evolution and development of an exaggerated sexual trait. Bioessays 2007; 29:300-7. [PMID: 17295307 DOI: 10.1002/bies.20543] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stalk-eyed flies of the family Diopsidae exhibit a unique form of hypercephaly, which has evolved under both natural and sexual selection. Male hypercephaly is used by female diopsids as an indicator of male quality. By choosing to mate with males expressing the most-exaggerated hypercephaly, females can benefit both from the enhanced fertility of these males and the transmission of other heritable advantages to their offspring. Stalk-eyed flies are close relatives of the model organism, Drosophila melanogaster. We have shown that similar genetic and cellular mechanisms regulate the initial development of the head capsule in fruitflies and diopsids. The great diversity of stalk-eyed fly species, exhibiting varying degrees of hypercephaly and sexual dimorphism, constitutes a major advantage for comparative studies of their development and evolution.
Collapse
Affiliation(s)
- Ian Warren
- Department of Biology, University College London, Wolfson House, London, UK
| | | |
Collapse
|