Clot Formation in the Sipunculid Worm Themiste petricola: A Haemostatic and Immune Cellular Response.
Int J Cell Biol 2012;
2012:280675. [PMID:
22550489 PMCID:
PMC3328956 DOI:
10.1155/2012/280675]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 11/20/2022] Open
Abstract
Clot formation in the sipunculid Themiste petricola, a coelomate nonsegmented marine worm without a circulatory system, is a cellular response that creates a haemostatic mass upon activation with sea water. The mass with sealing properties is brought about by homotypic aggregation of granular leukocytes present in the coelomic fluid that undergo a rapid process of fusion and cell death forming a homogenous clot or mass. The clot structure appears to be stabilized by abundant F-actin that creates a fibrous scaffold retaining cell-derived components. Since preservation of fluid within the coelom is vital for the worm, clotting contributes to rapidly seal the body wall and entrap pathogens upon injury, creating a matrix where wound healing can take place in a second stage. During formation of the clot, microbes or small particles are entrapped. Phagocytosis of self and non-self particles shed from the clot occurs at the clot neighbourhood, demonstrating that clotting is the initial phase of a well-orchestrated dual haemostatic and immune cellular response.
Collapse