1
|
Ohshima H, Mishima K, Amizuka N. Oral biosciences: The annual review 2020. J Oral Biosci 2021; 63:1-7. [PMID: 33582294 DOI: 10.1016/j.job.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review featured the review articles in the fields of "Microbiology," "Palate," "Stem Cells," "Mucosal Diseases," "Bone Cell Biology," "MicroRNAs," "TRPV1 Cation Channels," and "Interleukins" in addition to the review article by prize-winners of the "Rising Members Award" ("DKK3 expression and function in head and neck squamous cell carcinoma and other cancers"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding the various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
2
|
Molecular mechanisms in palatal rugae development. J Oral Biosci 2020; 62:30-35. [DOI: 10.1016/j.job.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
|
3
|
Nakaniwa M, Kawasaki M, Kawasaki K, Yamada A, Meguro F, Takeyasu M, Ohazama A. Primary cilia in murine palatal rugae development. Gene Expr Patterns 2019; 34:119062. [PMID: 31226309 DOI: 10.1016/j.gep.2019.119062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Periodic patterning of iterative structures is a fundamental process during embryonic development, since these structures are diverse across the animal kingdom. Therefore, elucidating the molecular mechanisms in the formation of these structures promotes understanding of the process of organogenesis. Periodically patterned ridges, palatal rugae (situated on the hard palate of mammals), are an excellent experimental model to clarify the molecular mechanisms involved in the formation of periodic patterning of iterative structures. Primary cilia are involved in many biological events, including the regulation of signaling pathways such as Shh and non-canonical Wnt signaling. However, the role of primary cilia in the development of palatal rugae remains unclear. We found that primary cilia were localized to the oral cavity side of the interplacode epithelium of the palatal rugae, whereas restricted localization of primary cilia could not be detected in other regions. Next, we generated mice with a placodal conditional deletion of the primary cilia protein Ift88, using ShhCre mice (Ift88 fl/fl;ShhCre). Highly disorganized palatal rugae were observed in Ift88 fl/fl;ShhCre mice. Furthermore, by comparative in situ hybridization analysis, many Shh and non-canonical Wnt signaling-related molecules showed spatiotemporal expression patterns during palatal rugae development, including restricted expression in the epithelium (placodes and interplacodes) and mesenchyme. Some of these expression were found to be altered in Ift88 fl/fl;ShhCre mice. Primary cilia is thus involved in development of palatal rugae.
Collapse
Affiliation(s)
- Mayuko Nakaniwa
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maeda Takeyasu
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
4
|
Kawasaki M, Kawasaki K, Meguro F, Yamada A, Ishikawa R, Porntaveetus T, Blackburn J, Otsuka-Tanaka Y, Saito N, Ota MS, Sharpe PT, Kessler JA, Herz J, Cobourne MT, Maeda T, Ohazama A. Lrp4/Wise regulates palatal rugae development through Turing-type reaction-diffusion mechanisms. PLoS One 2018; 13:e0204126. [PMID: 30235284 PMCID: PMC6147471 DOI: 10.1371/journal.pone.0204126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Periodic patterning of iterative structures is diverse across the animal kingdom. Clarifying the molecular mechanisms involved in the formation of these structure helps to elucidate the process of organogenesis. Turing-type reaction-diffusion mechanisms have been shown to play a critical role in regulating periodic patterning in organogenesis. Palatal rugae are periodically patterned ridges situated on the hard palate of mammals. We have previously shown that the palatal rugae develop by a Turing-type reaction-diffusion mechanism, which is reliant upon Shh (as an inhibitor) and Fgf (as an activator) signaling for appropriate organization of these structures. The disturbance of Shh and Fgf signaling lead to disorganized palatal rugae. However, the mechanism itself is not fully understood. Here we found that Lrp4 (transmembrane protein) was expressed in a complementary pattern to Wise (a secreted BMP antagonist and Wnt modulator) expression in palatal rugae development, representing Lrp4 expression in developing rugae and Wise in the inter-rugal epithelium. Highly disorganized palatal rugae was observed in both Wise and Lrp4 mutant mice, and these mutants also showed the downregulation of Shh signaling, which was accompanied with upregulation of Fgf signaling. Wise and Lrp4 are thus likely to control palatal rugae development by regulating reaction-diffusion mechanisms through Shh and Fgf signaling. We also found that Bmp and Wnt signaling were partially involved in this mechanism.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryuichi Ishikawa
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Thantrira Porntaveetus
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - James Blackburn
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Yoko Otsuka-Tanaka
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Naoaki Saito
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masato S. Ota
- Laboratory of Food Biological Science, Department of Food and Nutrition, Japan Women’s University, Bunkyo, Japan
| | - Paul T. Sharpe
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - John A. Kessler
- Department of Neurology, Northwestern University, Feinberg Medical School, Chicago, IL, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, United States of America
| | - Martyn T. Cobourne
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Regulation of mesenchymal signaling in palatal mucosa differentiation. Histochem Cell Biol 2017; 149:143-152. [DOI: 10.1007/s00418-017-1620-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
|
6
|
Tang Q, Li L, Lee MJ, Ge Q, Lee JM, Jung HS. Novel insights into a retinoic-acid-induced cleft palate based on Rac1 regulation of the fibronectin arrangement. Cell Tissue Res 2015; 363:713-22. [PMID: 26329303 DOI: 10.1007/s00441-015-2271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/06/2015] [Indexed: 01/30/2023]
Abstract
Retinoic acid (RA)-induced cleft palate results from both extrinsic obstructions by the tongue and internal factors within the palatal shelves. Our previous study showed that the spatiotemporal expression of Rac1 regulates the fibronectin (FN) arrangement through cell density alterations that play an important role in palate development. In this study, we investigate the involvement of the Rac1 regulation of the FN arrangement in RA-induced cleft palate. Our results demonstrate that RA-induced intrinsic alterations in palatal shelves, including a delayed progress of cell condensation, delay palate development, even after the removal of the tongue. Further analysis shows that RA treatment diminishes the region-distinctive expression of Rac1 within the palatal shelves, which reversely alters the fibrillar arrangement of FN. Furthermore, RA treatment disrupts the formation of lamellipodia, which are indicative structures of cell migration that are regulated by Rac1. These results suggest that the Rac1 regulation of the FN arrangement is involved in RA-induced cleft palate through the regulation of cell migration, which delays the progress of cell condensation and subsequently influences the FN arrangement, inducing a delay in palate development. Our study provides new insights into the RA-induced impairment of palatal shelf elevation based on cell migration dynamics.
Collapse
Affiliation(s)
- Qinghuang Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Liwen Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Qing Ge
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea. .,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
7
|
Neupane S, Sohn WJ, Gwon GJ, Kim KR, Lee S, An CH, Suh JY, Shin HI, Yamamoto H, Cho SW, Lee Y, Kim JY. The role of APCDD1 in epithelial rearrangement in tooth morphogenesis. Histochem Cell Biol 2015; 144:377-87. [PMID: 26170146 DOI: 10.1007/s00418-015-1345-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
Abstract
Adenomatosis polyposis coli downregulated 1 (APCDD1), a negative regulator of Wnt signaling, was examined to understand detailed mechanisms underlying Wnt signaling tooth development. In situ hybridization showed that Apcdd1 was expressed in the condensed mesenchyme at the bud stage, and in the inner enamel epithelium (IEE), including enamel knot (EK) at the cap stage. In vitro organ cultivation by using Apcdd1 antisense oligodeoxynucleotides was performed at E13.5 for 2 days to define the developmental functions of APCDD1 during tooth development. Analysis of histogenesis and cellular events such as cell adhesion, proliferation, apoptosis and epithelial rearrangement after Apcdd1 knockdown showed altered morphogenesis of the tooth germ with decreased cell proliferation and altered localization of cell adhesion molecules. Actin filament staining and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) labeling of IEE cells showed that Apcdd1 knockdown enhanced epithelial rearrangement in the IEE and EK. To understand the precise signaling regulations of Apcdd1, we evaluated the altered expression patterns of signaling molecules, related with Wnt and enamel knot signalings using RT-qPCR. Tooth germs at cap stage were transplanted into the kidney capsules and were allowed to develop into calcified teeth for 3 weeks. Apcdd1 knockdown increased the number of ectopic cusps on the mesial side of the tooth. Our results suggested that APCDD1 modulates the gene expression of Wnt- and EK-related signaling molecules at the cap stage of tooth development, and is involved in tooth cusp patterning by modulating the epithelial rearrangement in the IEE.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 700-412, Korea
| | - Wern-Joo Sohn
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 700-412, Korea
| | - Gi-Jeong Gwon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 700-412, Korea
| | - Ki-Rim Kim
- Department of Dental Hygiene, IHBR, Kyungpook National University, Daegu, Korea
| | - Sanggyu Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Hong-In Shin
- Department of Oral and Maxillofacial Pathology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sung-Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 700-412, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 700-412, Korea.
| |
Collapse
|
8
|
Tang Q, Li L, Jin C, Lee JM, Jung HS. Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation. Cell Tissue Res 2015; 361:857-68. [PMID: 25843690 DOI: 10.1007/s00441-015-2169-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
Abstract
Palatal shelf elevation is a crucial process in palate development, with the contribution of various factors. Disturbances in any factor during this process result in cleft palate. Prior to palatal shelf elevation starting from embryonic day 12.5, the Rac1 expression level in the bend region of the mid-palatal shelf progressively increases and the cell densities in the bend and groove regions gradually become higher than those in the middle region. The comparative decrease of cell density in the middle region is correlated with a gradual alteration of the arrangement of fibronectin (FN) fibers, whereas the bend and groove regions with higher cell densities maintain ring-like FN arrangements. Rac1 overexpression alters the fibrillar FN arrangement in the middle region to the ring-like arrangement by increasing cell density. This alteration is sufficient to induce the failure of palatal shelf elevation, ultimately leading to cleft palate. Furthermore, the inhibition of FN delays palatal shelf elevation. Thus, the spatiotemporal expression of Rac1 plays an impressive role in palatal shelf elevation by regulating FN arrangement within the palatal shelf.
Collapse
Affiliation(s)
- Qinghuang Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | | | | | | | | |
Collapse
|
9
|
Neupane S, Sohn WJ, Rijal G, Lee YJ, Lee S, Yamamoto H, An CH, Cho SW, Lee Y, Shin HI, Kwon TY, Kim JY. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 2014; 358:109-21. [DOI: 10.1007/s00441-014-1908-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
|
10
|
Rgs19 regulates mouse palatal fusion by modulating cell proliferation and apoptosis in the MEE. Mech Dev 2012; 129:244-54. [DOI: 10.1016/j.mod.2012.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/12/2023]
|
11
|
Shh signaling is essential for rugae morphogenesis in mice. Histochem Cell Biol 2011; 136:663-75. [DOI: 10.1007/s00418-011-0870-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2011] [Indexed: 12/31/2022]
|