1
|
Mu J, Zhang L, Zhang C, Xu E, Wang L, Liu X, Chang G, Sun X, Ma C, Yuan H, Zhao F, Gao J. Improved sintering performance of β-SiAlON-Si 3N 4 and its osteogenic differentiation ability by adding β-SiAlON. J Biomater Appl 2022; 36:1652-1663. [PMID: 35139673 DOI: 10.1177/08853282211054323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve the sintering performance of silicon nitride bioceramics, we explored the effect of β-SiAlON's Z-value on the physical, chemical, and biological properties of β-SiAlON-Si3N4 composites. Results showed that the phase product was β-Si3N4. As the Z-value increased, the X-ray diffraction peaks gradually shifted to a smaller angle, the material grains were more tightly packed, and the bulk density and compressive strength increased, reaching the highest values (2.71 g/cm3 and 1157 MPa, respectively) at Z = 4. Soaking and ion-release experiments show that in an aqueous environment, a small amount of Al and Si ions were released, and no obvious decomposition occurred on the surface of the material. The biological performance showed that the growth of cultured cells in each group was in good condition, there was no obvious difference in morphology and adhesion, and the materials had good biological performance. An increase in the Z-value promotes the formation of mineralized nodules and osteogenic differentiation of MC3T3-E1 cells, which may be because the release of Si can promote osteogenic differentiation. Therefore, the addition of β-SiAlON could improve the sintering performance of β-Si3N4 without degrading its biological properties. The prepared β-SiAlON-Si3N4 composite ceramic is a latent bioceramic material.
Collapse
Affiliation(s)
- Jinghua Mu
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Liguo Zhang
- Hena Institute of Medical and Pharmaceutical Science, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.,BGI College, Zhengzhou University, Zhengzhou 450007, China
| | - Can Zhang
- Hena Institute of Medical and Pharmaceutical Science, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.,BGI College, Zhengzhou University, Zhengzhou 450007, China
| | - Enxia Xu
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Lulu Wang
- BGI College, Zhengzhou University, Zhengzhou 450007, China
| | - Xinhong Liu
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Guanglei Chang
- BGI College, Zhengzhou University, Zhengzhou 450007, China
| | - Xu Sun
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, No. 127 Dongming Road, Zhengzhou 450008, China
| | - Chengliang Ma
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Huiyu Yuan
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Fei Zhao
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| | - Jinxing Gao
- 12636School of Material Science and Engineering, Zhengzhou University, Zhengzhou, NO.100 Science Avenue, Zheng Zhou 450001, China.,Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
2
|
De Bonis A, Uskoković V, Barbaro K, Fadeeva I, Curcio M, Imperatori L, Teghil R, Rau JV. Pulsed laser deposition temperature effects on strontium-substituted hydroxyapatite thin films for biomedical implants. Cell Biol Toxicol 2020; 36:537-551. [PMID: 32377851 DOI: 10.1007/s10565-020-09527-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Substituting small molecule drugs with abundant and easily affordable ions may have positive effects on the way countless disease treatments are approached. The interest in strontium cation in bone therapies soared in the wake of the success of strontium ranelate in the treatment of osteoporosis. A new method for producing thin strontium-containing hydroxyapatite (Sr-HA, Ca9Sr(PO4)6(OH)2) films as coatings that render bioinert titanium implant bioactive is reported here. The method is based on the combination of a mechanochemical synthesis of Sr-HA targets and their deposition in form of thin films on top of titanium with the use of laser ablation at low pressure. The films were 1-2 μm in thickness and their formation was studied at different temperatures, including 25, 300, and 500 °C. Highly crystalline Sr-HA target transformed during pulsed laser deposition to a fully amorphous film, whose degree of long-range order recovered with temperature. Particle edges became somewhat sharper and surface roughness moderately increased with temperature, but the (Ca+Sr)/P atomic ratio, which increased 1.5 times during the film formation, remained approximately constant at different temperatures. Despite the mostly amorphous structure of the coatings, their affinity for capturing atmospheric carbon dioxide and accommodating it as carbonate ions that replace both phosphates and hydroxyls of HA was confirmed in an X-ray photoelectron spectroscopic analysis. As the film deposition temperature increased, the lattice voids got reduced in concentration and the structure gradually "closed," becoming more compact and entailing a linear increase in microhardness with temperature, by 0.03 GPa/°C for the entire 25-500 °C range. Biocompatibility and bioactivity of Sr-HA thin films deposited on titanium were confirmed in an interaction with dental pulp stem cells, suggesting that these coatings, regardless of the processing temperature, may be viable candidates for the surface components of metallic bone implants.
Collapse
Affiliation(s)
- Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA, 92697, USA
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178, Rome, Italy
| | - Inna Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, Moscow, Russia, 119991
| | - Mariangela Curcio
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luca Imperatori
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
3
|
Mao L, Wang M, Li Y, Liu Y, Wang J, Xue C. Docosahexaenoic acid‐containing phosphatidylcholine induced osteoblastic differentiation by modulating key transcription factors. J Food Biochem 2018. [DOI: 10.1111/jfbc.12661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lei Mao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Meiling Wang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Yuanyuan Li
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Yaxuan Liu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Jingfeng Wang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
4
|
Silva GAB, Bertassoli BM, Sousa CA, Albergaria JD, de Paula RS, Jorge EC. Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone. J Bone Miner Metab 2018; 36:73-86. [PMID: 28321651 DOI: 10.1007/s00774-017-0822-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
Abstract
Blocks of Bovine bone have shown promising results as implantable scaffolds to promote bone regeneration. Strontium ranelate (SrR) is both an antiresorptive and an anabolic drug that has been indicated for oral administration to treat osteoporosis. Few studies, however, have investigated the local effects of SrR and its use in association with biomaterials thus far. In this work, we investigated SrR effects in cultures of primary osteoblasts (PO, from Wistar rats calvaria) and immortalized osteoblasts (IO, from MC3T3-E1 cell line) cultivated as a monolayer or in association with scaffolds of bovine bone in mineralized (MBB) and demineralized (DBB) forms. The optimum dose to induce SrR effects on cell viability was established as 0.1 mM. Our results suggested that the local administration of SrR is biocompatible and non-cytotoxic. In addition, SrR appeared to accelerate primary osteoblast cell differentiation by enhancing alkaline phosphatase activity, the expression of osteogenic differentiation markers, the synthesis of the organic matrix, and a decrease of Ca2+ ions in mineralized nodules. DBB was found to be a better scaffold material to promote PO and IO cell proliferation. Exposing the proteins of the demineralized bone matrix might improve scaffold osteoconductive properties. Our results indicated the importance of further investigation of the administration of SrR at sites of bone repair. The association of SrR and bone grafts suggests the possibility of using SrR as a co-adjuvant for bone tissue bioengineering and in bone regeneration therapies.
Collapse
Affiliation(s)
- Gerluza Aparecida Borges Silva
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno Machado Bertassoli
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Cristiane Aparecida Sousa
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Juliano Douglas Albergaria
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rayan Silva de Paula
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Erika Cristina Jorge
- Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Biologia Oral e do Desenvolvimento, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
5
|
Querido W, Falcon JM, Kandel S, Pleshko N. Vibrational spectroscopy and imaging: applications for tissue engineering. Analyst 2017; 142:4005-4017. [PMID: 28956032 PMCID: PMC5653442 DOI: 10.1039/c7an01055a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
6
|
Guo X, Wei S, Lu M, Shao Z, Lu J, Xia L, Lin K, Zou D. Dose-dependent Effects of Strontium Ranelate on Ovariectomy Rat Bone Marrow Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells. Int J Biol Sci 2016; 12:1511-1522. [PMID: 27994515 PMCID: PMC5166492 DOI: 10.7150/ijbs.16499] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
In clinic, strontium ranelate (SrR) is a useful drug to treat osteoporosis by orally taken method, but some side effect appeared in recent years. The aim of this study is to evaluate the effectiveness and safety of SrR on cells by direct application, to study the possibility of local application of this drug. Qualitative ALP staining, quantitative ALP activity assay, alizarin red staining, realtime PCR and westernblot assay were used to evaluate the osteogenesis ability of SrR under normal or osteogenic induction environment of ovariectomy bone marrow mesenchymal stem cells (OVX-BMSCs). The angiogenesis ability of SrR was studied by immunofluorescence staining of CD31 and vWF of OVX-BMSCs under angiogenesis induction environment, transwell, tubeformation and realtime PCR assay of HUVECs. Signaling pathway of PI3K/AKT/mTOR was also studied. The result demonstrated that SrR could enhance proliferation and osteogenic differentiation of OVX-BMSCs. The osteogenesis effect of SrR has been proved by the better performed of ALP activity, alizarin red staining and the remarkable up-regulation of ALP, Col-I, Runx2, OCN, BMP-2, BSP, OPG of the OVX-BMSCs, and reduction of RANKL. In addition, SrR promotes angiogenesis differentiation of both OVX-BMSCs and HUVECs. Higher intensity of immunostaining of CD31 and vWF, better result of transwell and tubeformation assay could be observed in SrR treated group, and increasing mRNA levels of VEGF and Ang-1 in the OVX-BMSCs, VEGF in HUVECs were learnt. Signaling pathway assay showed that PI3K/AKT/mTOR signaling pathway was involved in this SrR triggered angiogenesis procedure. The thrombosis marker ET-1, PAI-1 and t-PA were up-regulated, but no significant differences for low concentration (<0.5mM). The concentration between 0.25-0.5mM may be more appropriate for local application, and locally application of SrR could be considered as a promising way for bone regeneration.
Collapse
Affiliation(s)
- Xiaojing Guo
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Silong Wei
- Department of Oral and Craniomaxillofacial Sciences, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengmeng Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhengwei Shao
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lunguo Xia
- Department of Oral and Craniomaxillofacial Sciences, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
7
|
Querido W, Farina M, Anselme K. Strontium ranelate improves the interaction of osteoblastic cells with titanium substrates: Increase in cell proliferation, differentiation and matrix mineralization. BIOMATTER 2016; 5:e1027847. [PMID: 26176488 PMCID: PMC5044704 DOI: 10.1080/21592535.2015.1027847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We describe direct effects of strontium ranelate on the interaction of osteoblastic cells with different titanium substrates. Our goal was to better understand the potential of this drug for improving the efficacy of bone implants. Treatment was done with 0.12 and 0.5 mM Sr(2+) of strontium ranelate in cell culture. We analyzed cell response to the drug on titanium substrates with surface topographies obtained using acid etching, electro-erosion processing, sandblasting, and machine-tooling. Treatment preserved the initial cell adhesion to the substrates, cell shape parameters (area, aspect ratio, circularity, and solidity), and the orientation of cells on grooved surfaces. However, both concentrations of the drug increased cell proliferation in all substrates. Moreover, a dose-dependent increase in alkaline phosphatase activity and in the production of mineralized matrix with typical features of bone tissue was shown. The observed effects were similar in the different substrates. In conclusion, strontium ranelate improved the interaction of osteoblastic cells with titanium substrates, increasing cell proliferation and differentiation into mature osteoblasts and the production of bone-like mineralized matrix for all substrates. This study highlights a promising role of strontium ranelate on enhancing the clinical success of bone implants, particularly in patients with osteoporosis.
Collapse
Affiliation(s)
- William Querido
- a Institut de Sciences des Matériaux de Mulhouse; CNRS UMR7361; Université de Haute-Alsace ; Mulhouse , France.,b Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro ; Rio de Janeiro , Brazil.,c Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro ; Rio de Janeiro , Brazil
| | - Marcos Farina
- b Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro ; Rio de Janeiro , Brazil
| | - Karine Anselme
- a Institut de Sciences des Matériaux de Mulhouse; CNRS UMR7361; Université de Haute-Alsace ; Mulhouse , France
| |
Collapse
|
8
|
Almeida MM, Nani EP, Teixeira LN, Peruzzo DC, Joly JC, Napimoga MH, Martinez EF. Strontium ranelate increases osteoblast activity. Tissue Cell 2016; 48:183-8. [PMID: 27157549 DOI: 10.1016/j.tice.2016.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
Strontium ranelate (SR) is the first generation of a new class of medication for osteoporosis, which is capable of inducing bone formation and, to a certain extent, inhibiting bone resorption. The aim of this study was to evaluate the in vitro effects of SR on osteoblastic cell cultures. MC3TE-E1 cells were seeded in 24-well plates at a density of 2×10(4) cells/well and exposed to SR at 0.05, 0.1, and 0.5mM. The following parameters were assayed: 1) Cell proliferation by hemocytometer counting after 24, 48 and 72h, 2) Cell viability by MTT assay after 24, 48 and 72h, 3) Type I Collagen and Osteopontin (OPN) quantification by Western Blotting, ELISA, and Real Time PCR after 48h, 3) Immunolocalization of fibronectin (FN) by epifluorescence, and 4) matrix mineralization by Alizarin Red staining after 14days. After 24, 48 and 72h, the cell proliferation and viability were not affected by SR at 0.05 and 0.1mM (p>0.05). However, cell cultures exposed to SR at 0.5mM exhibited a decrease in both cell proliferation and cell viability in all time points assayed (p<0.05). High levels of protein and mRNA for Type I Collagen and OPN were detected in cultures exposed to SR, particularly at 0.5mM (p<0.05). SR allowed the expression of FN in osteoblastic cell cultures as observed by epifluorescence analysis. The mineralized bone-like nodule formation was affected in a concentration-dependent manner by SR, with large bone-like nodules being detected in osteoblastic cell cultures exposed to SR at 0.5mM. In conclusion, these results suggest that SR can accelerate acquisition of the osteoblastic phenotype, which explains, at least in part, the rebalancing of bone turnover in favor of bone formation.
Collapse
Affiliation(s)
- Monica Marletti Almeida
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Edson Parra Nani
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Lucas Novaes Teixeira
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Daiane Cristina Peruzzo
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Júlio César Joly
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | | |
Collapse
|
9
|
Querido W, Rossi AL, Farina M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron 2015; 80:122-34. [PMID: 26546967 DOI: 10.1016/j.micron.2015.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate.
Collapse
Affiliation(s)
- William Querido
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Andre L Rossi
- Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:487535. [PMID: 25003114 PMCID: PMC4070504 DOI: 10.1155/2014/487535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 04/12/2014] [Indexed: 11/18/2022]
Abstract
Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.
Collapse
|
11
|
Querido W, Campos APC, Martins Ferreira EH, San Gil RAS, Rossi AM, Farina M. Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures. Cell Tissue Res 2014; 357:793-801. [PMID: 24859219 DOI: 10.1007/s00441-014-1901-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/17/2014] [Indexed: 11/27/2022]
Abstract
We evaluate the effects of strontium ranelate on the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures, a system that gave us the advantage of obtaining mineral samples produced exclusively during treatment. Cells were treated with strontium ranelate at concentrations of 0.05 and 0.5 mM Sr(2+). Mineral substances were isolated and analyzed by using a combination of methods: Fourier transform infrared spectroscopy, solid-state (1)H nuclear magnetic resonance, X-ray diffraction, micro-Raman spectroscopy and energy dispersive X-ray spectroscopy. The minerals produced in all cell cultures were typical bone-like apatites. No changes occurred in the local structural order or crystal size of the minerals. However, we noticed several relevant changes in the mineral produced under 0.5 mM Sr(2+): (1) increase in type-B CO3 (2-) substitutions, which often lead to the creation of vacancies in Ca(2+) and OH(-) sites; (2) incorporation of Sr(2+) by substituting slightly less than 10 % of Ca(2+) in the apatite crystal lattice, resulting in an increase in both lattice parameters a and c; (3) change in the PO4 (3-) environments, possibly because of the expansion of the lattice; (4) the Ca/P ratio of this mineral was reduced, but its (Ca+Sr)/P ratio was the same as that of the control, indicating that its overall cation/P ratio was preserved. Thus, strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.
Collapse
Affiliation(s)
- William Querido
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|