1
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
2
|
Asmara AP, Chen H, Ung AT. Preventing Adipogenesis and Preserving Mitochondria and GLUT-4 Functions by Extracts and Isolated Compounds of Australian Acacia saligna. Molecules 2023; 28:6677. [PMID: 37764453 PMCID: PMC10535536 DOI: 10.3390/molecules28186677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Acacia saligna's secondary metabolites show promise in treating type 2 diabetes mellitus and its related conditions. We previously discovered that methanolic extracts, isolated flavonoids, and cyclitols effectively preserve mitochondria in 3T3-L1 adipocytes. In this current work, quantification of lipid droplet levels with Oil Red O assay showed a noticeable decrease in lipogenesis in 3T3-L1 cells. Methanolic leaf and bark extracts and isolated compounds, (-)-epicatechin 6 and myricitrin 8, reduced cellular lipid levels by 21.15% to 25.28%, respectively. mRNA levels of key regulators of mitochondrial biogenesis, such as adiponectin, PGC-1α, and mtTFA, were increased. Methanolic flower extract (FL-MeOH) and its chemical components, naringenin 1 and D-(+)-pinitol 5a, increased these gene levels from 10% to 29% at the higher dose. Our study found that FL-MeOH slightly reduced pro-inflammatory cytokines TNF-α and IL-6, attributed to two phytochemicals, naringenin-7-O-α-L-arabinofuranoside 2 and D-(+)-pinitol 5a. Western blot analysis also showed that adipocytes treated with MeOH extracts had higher GLUT-4 expression levels than untreated adipocytes. Overall, A. saligna extracts and their isolated compounds demonstrated anti-lipogenesis activity during 3T3-L1 cell differentiation, modulation of transcriptional levels of adiponectin, PGC-1α, and mtTFA, reducing TNF-α and IL-6 mRNA levels, promoting mitochondrial biogenesis, and enhancing GLUT-4 expression.
Collapse
Affiliation(s)
- Anjar P Asmara
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
4
|
Lin J, Guo Z, Zheng Z, Hou L, Xu J, Liu Q, Du T, Guo F, Jing X. Desferoxamine protects against hemophilic arthropathy through the upregulation of HIF-1α-BNIP3 mediated mitophagy. Life Sci 2023; 312:121172. [PMID: 36410411 DOI: 10.1016/j.lfs.2022.121172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
AIMS Hemophilic arthropathy (HA) is a typically iron overload induced joint disease secondary to continuous joint bleeding, however, the exact role of iron chelators in HA has not been fully elucidated. In the present study, we investigated whether desferoxamine (DFO), an iron chelator, could limit the development of HA and the underlying mechanisms. MATERIALS AND METHODS A HA mice model was established by needle puncture in the left knees of FVIII-deficient hemophilic mice. HA progression was evaluated at 8 weeks after DFO administration. Moreover, chondrocytes were treated with ferric ammonium citrate (FAC) to mimic iron overload in vitro. Modulating effect of DFO on iron overload induced oxidative stress, chondrocytes apoptosis and extracellular matrix (ECM) degradation and the role of HIF-1α-BNIP3 mediated mitophagy were examined. KEY FINDINGS We found that DFO limited the development of HA and protected iron overload induced ECM degradation, chondrocytes apoptosis and oxidative stress. Besides chelating Fe2+, we found that HIF-1α-BNIP3 mediated mitophagy played important roles in the protective effect of DFO. HIF-1α inhibition suppressed chondrocytes mitophagy process and partly diminished the protective effect of DFO on chondrocytes iron overload. SIGNIFICANCE In conclusion, DFO could protect against HA development via HIF-1α-BNIP3 mediated mitophagy, suggesting DFO might be a potential therapeutic supplement for HA treatment.
Collapse
Affiliation(s)
- Jiamin Lin
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318000, Zhejiang, PR China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Qiang Liu
- Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, PR China
| | - Ting Du
- Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, PR China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong, PR China.
| |
Collapse
|
5
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
6
|
Behera J, Ison J, Voor MJ, Tyagi N. Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations. Theranostics 2021; 11:8605-8623. [PMID: 34373761 PMCID: PMC8344023 DOI: 10.7150/thno.63749] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Manipulation of the gut microbiome can prevent pathologic bone loss. However, the effects of probiotics on mitochondrial epigenetic remodeling and skeletal homeostasis in the high-fat diet (HFD)-linked obesity remains to be explored. Here, we examined the impact of probiotics supplementation on mitochondrial biogenesis and bone homeostasis through the histone methylation mechanism in HFD fed obese mice. Methods: 16S rRNA gene sequencing was performed to study the microbiota composition in the gut and microbial dysbiosis in obese mouse model. High resolution (microPET/CT) imaging was performed to demonstrate the obese associated colonic inflammation. Obese-associated upregulation of target miRNA in osteoblast was investigated using a microRNA qPCR array. Osteoblastic mitochondrial mass was evaluated using confocal imaging. Overexpression of mitochondrial transcription factor (Tfam) was used to investigate the glycolysis and mitochondrial bioenergetic metabolism using Tfam-transgenic (Tg) mice fed on HFD. The bone formation and mechanical strength was evaluated by microCT analysis and three-point bending analysis. Results: High-resolution imaging (µ-CT) and mechanical testing revealed that probiotics induced a significant increase of trabecular bone volume and bone mechanical strength respectively in obese mice. Probiotics or Indole-3-propionic acid (IPA) treatment directly to obese mice, prevents gut inflammation, and improved osteoblast mineralization. Mechanistically, probiotics treatment increases mitochondrial transcription factor A (Tfam) expression in osteoblasts by promoting Kdm6b/Jmjd3 histone demethylase, which inhibits H3K27me3 epigenetic methylation at the Tfam promoter. Furthermore, Tfam-transgenic (Tg) mice, fed with HFD, did not experience obesity-linked reduction of glucose uptake, mitochondrial biogenesis and mineralization in osteoblasts. Conclusions: These results suggest that the probiotics mediated changes in the gut microbiome and its derived metabolite, IPA are potentially be a novel agent for regulating bone anabolism via the gut-bone axis.
Collapse
|
7
|
Insulin-like growth factor-1 short-period therapy stimulates bone marrow cells in obese swiss mice. Cell Tissue Res 2021; 384:721-734. [PMID: 33977324 DOI: 10.1007/s00441-020-03357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/18/2020] [Indexed: 10/21/2022]
Abstract
Bone marrow cells (BMCs) from obese Swiss mice fed with Western diet show mitochondrial dysfunction. Obesity interferes with BMCs disrupting energetic metabolism, stimulating apoptosis, and reducing cell proliferation since adipose tissue releases inflammatory adipokines into the medullar microenvironment. These changes lead to reduction of BMC differentiation capacity and hematopoiesis impairment, a process responsible for blood cell continuous production through hematopoietic stem cells (HSCs). This work aimed to analyze the effects of IGF-1 therapy on BMC viability in Western diet-induced obesity, in vivo. We observed that after only 1 week of treatment, obese Swiss mice presented reduced body weight and visceral fat and increased mitochondrial oxidative capacity and coupling, indicating mitochondrial function improvement. In addition, IGF-1 was able to reduce apoptosis of total BMCs, stem cell subpopulations (hematopoietic and mesenchymal), and leukocytes, restoring all progenitor hematopoietic lineages. The treatment also contributed to increase proliferative capacity of hematopoietic stem cells and leukocytes, keeping the hematopoietic and immune systems balanced. Therefore, we conclude that IGF-1 short period therapy improved BMC survival, proliferation, and differentiation capacity in obese Swiss mice.
Collapse
|
8
|
Andrade D, Oliveira G, Menezes L, Nascimento AL, Carvalho S, Stumbo AC, Thole A, Garcia-Souza É, Moura A, Carvalho L, Cortez E. Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis 2020; 30:151-161. [PMID: 31753790 DOI: 10.1016/j.numecd.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases are the main cause of mortality in obesity. Despite advanced understanding, the mechanisms that regulate cardiac progenitor cells (CPC) survival in pathological conditions are not clear. Low IGF-1 plasma levels are correlated to obesity, cardiomyopathy and CPC death, so this work aimed to investigate IGF-1 therapeutic potential on cardiomyopathy and its relationship with the survival, proliferation and differentiation of CPC in Western diet-induced obesity. METHODS AND RESULTS Male Swiss mice were divided into control group (CG, n = 8), fed with standard diet; and obese group (OG, n = 16), fed with Western diet, for 12 weeks. At 11th week, OG was subdivided to receive a daily subcutaneous injection of human recombinant IGF-1 (100 μg.Kg-1) for seven consecutive days (OG + IGF1, n = 8). Results showed that IGF-1 therapy improved the metabolic parameters negatively impacted by western diet in OG, reaching levels similar to CG. OG + IGF-1 also demonstrated restored heart energetic metabolism, fibrosis resolution, decreased apoptosis level, restored cardiac gap junctions and intracellular calcium balance. Cardiomyopathy improvement was accompanied by increased CPC survival, proliferation and newly cardiomyocytes formation related to increased pAkt/Akt ratio. CONCLUSION These results suggest that only one week of IGF-1 therapy has cardioprotective effects through Akt pathway upregulation, ensuring CPC survival and differentiation, contributing to heart failure rescue.
Collapse
Affiliation(s)
- Daniela Andrade
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Genilza Oliveira
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Luciana Menezes
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Lúcia Nascimento
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Érica Garcia-Souza
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Anibal Moura
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Laís Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil.
| |
Collapse
|
9
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells. Stem Cell Rev Rep 2018; 14:535-545. [PMID: 29667027 DOI: 10.1007/s12015-018-9812-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
Collapse
|
11
|
Ortinau LC, Linden MA, Dirkes R, Rector RS, Hinton PS. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat. Bone 2017; 105:200-211. [PMID: 28893629 DOI: 10.1016/j.bone.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). OBJECTIVE The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. METHODS At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. RESULTS Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. CONCLUSIONS Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and microarchitecture in OLETF rats.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Service-Harry S Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Rebecca Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States; Research Service-Harry S Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
12
|
Ortinau LC, Linden MA, Dirkes RK, Rector RS, Hinton PS. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats. Bone 2017; 103:188-199. [PMID: 28711659 DOI: 10.1016/j.bone.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
The present study extends our previous findings that exercise, which prevents the onset of insulin resistance and type 2 diabetes (T2D), also prevents the detrimental effects of T2D on whole-bone and tissue-level strength. Our objective was to determine whether exercise improves bone's structural and material properties if insulin resistance is already present in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is hyperphagic due to a loss-of-function mutation in cholecystokinin-1 receptor (CCK-1 receptor), which leads to progressive obesity, insulin resistance and T2D after the majority of skeletal growth is complete. Because exercise reduces body mass, which is a significant determinant of bone strength, we used a body-mass-matched caloric-restricted control to isolate body-mass-independent effects of exercise on bone. Eight-wk old, male OLETF rats were fed ad libitum until onset of hyperglycemia (20weeks of age), at which time they were randomly assigned to three groups: ad libitum fed, sedentary (O-SED); ad libitum fed, treadmill running (O-EX); or, sedentary, mild caloric restriction to match body mass of O-EX (O-CR). Long-Evans Tokushima Otsuka rats served as the normophagic, normoglycemic controls (L-SED). At 32weeks of age, O-SED rats had T2D as evidenced by hyperglycemia and a significant reduction in fasting insulin compared to OLETFs at 20weeks of age. O-SED rats also had reduced total body bone mineral content (BMC), increased C-terminal telopeptide of type I collagen (CTx)/tartrate resistant acid phosphatase isoform 5b (TRAP5b), decreased N-terminal propeptide of type I procollagen (P1NP), reduced percent cancellous bone volume (BV/TV), trabecular number (Tb.N) and increased trabecular separation (Tb.Sp) and structural model index (SMI) of the proximal tibia compared to L-SED. T2D also adversely affected biomechanical properties of the tibial diaphysis, and serum sclerostin was increased and β-catenin, runt-related transcription factor 2 (Runx2) and insulin-like growth factor-I (IGF-I) protein expression in bone were reduced in O-SED vs. L-SED. O-EX or O-CR had greater total body bone mineral density (BMD) and BMC, and BV/TV, Tb.N, Tb.Sp, and SMI compared to O-SED. O-EX had lower CTx and CR greater P1NP relative to O-SED. O-EX, not O-CR, had greater cortical thickness and area, and improved whole-bone and tissue-level biomechanical properties associated with a 4-fold increase in cortical bone β-catenin protein expression vs. O-SED. In summary, EX or CR initiated after the onset of insulin resistance preserved cancellous bone volume and structure, and EX elicited additional benefits in cortical bone.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
13
|
Tencerova M, Kassem M. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis. Front Endocrinol (Lausanne) 2016; 7:127. [PMID: 27708616 PMCID: PMC5030474 DOI: 10.3389/fendo.2016.00127] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- *Correspondence: Michaela Tencerova,
| | - Moustapha Kassem
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|