1
|
Thomas J, Garcia J, Terry M, Mahaney S, Quintanilla O, Silva DC, Morales M, VandeBerg JL. Monodelphis domestica as a Fetal Intra-Cerebral Inoculation Model for Zika Virus Pathogenesis. Pathogens 2023; 12:pathogens12050733. [PMID: 37242404 DOI: 10.3390/pathogens12050733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Monodelphis domestica (the laboratory opossum) is a marsupial native to South America. At birth, these animals are developmentally equivalent to human embryos at approximately 5 weeks of gestation, which, when coupled with other characteristics including the size of the animals, the development of a robust immune system during juvenile development, and the relative ease of experimental manipulation, have made M. domestica a valuable model in many areas of biomedical research. However, their suitability as models for infectious diseases, especially neurotropic viruses such as Zika virus (ZIKV), is currently unknown. Here, we describe the replicative effects of ZIKV using a fetal intra-cerebral model of inoculation. Using immunohistology and in situ hybridization, we found that opossum embryos and fetuses are susceptible to infection by ZIKV administered intra-cerebrally, that the infection persists, and that viral replication results in neural pathology and may occasionally result in global growth restriction. These results demonstrate the utility of M. domestica as a new animal model for investigating ZIKV infection in vivo and facilitate further inquiry into viral pathogenesis, particularly for those viruses that are neurotropic, that require a host with the ability to sustain sustained viremia, and/or that may require intra-cerebral inoculations of large numbers of embryos or fetuses.
Collapse
Affiliation(s)
- John Thomas
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Juan Garcia
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Matthew Terry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Susan Mahaney
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| | - Oscar Quintanilla
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Dionn Carlo Silva
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Marisol Morales
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - John L VandeBerg
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| |
Collapse
|
2
|
Wheaton BJ, Sena J, Sundararajan A, Umale P, Schilkey F, Miller RD. Identification of regenerative processes in neonatal spinal cord injury in the opossum (Monodelphis domestica): A transcriptomic study. J Comp Neurol 2021; 529:969-986. [PMID: 32710567 PMCID: PMC7855507 DOI: 10.1002/cne.24994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the response to spinal cord injury in the gray short‐tailed opossum (Monodelphis domestica). In opossums spinal injury early in development results in spontaneous axon growth through the injury, but this regenerative potential diminishes with maturity until it is lost entirely. The mechanisms underlying this regeneration remain unknown. RNA sequencing was used to identify differential gene expression in regenerating (SCI at postnatal Day 7, P7SCI) and nonregenerating (SCI at Day 28, P28SCI) cords +1d, +3d, and +7d after complete spinal transection, compared to age‐matched controls. Genes showing significant differential expression (log2FC ≥ 1, Padj ≤ 0.05) were used for downstream analysis. Across all time‐points 233 genes altered expression after P7SCI, and 472 genes altered expression after P28SCI. One hundred and forty‐seven genes altered expression in both injury ages (63% of P7SCI data set). The majority of changes were gene upregulations. Gene ontology overrepresentation analysis in P7SCI gene‐sets showed significant overrepresentations only in immune‐associated categories, while P28SCI gene‐sets showed overrepresentations in these same immune categories, along with other categories such as “cell proliferation,” “cell adhesion,” and “apoptosis.” Cell‐type–association analysis suggested that, regardless of injury age, injury‐associated gene transcripts were most strongly associated with microglia and endothelial cells, with strikingly fewer astrocyte, oligodendrocyte and neuron‐related genes, the notable exception being a cluster of mostly downregulated oligodendrocyte‐associated genes in the P7SCI + 7d gene‐set. Our findings demonstrate a more complex transcriptomic response in nonregenerating cords, suggesting a strong influence of non‐neuronal cells in the outcome after injury and providing the largest survey yet of the transcriptomic changes occurring after SCI in this model.
Collapse
Affiliation(s)
- Benjamin J Wheaton
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden.,Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | | | - Pooja Umale
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Majka P, Chlodzinska N, Turlejski K, Banasik T, Djavadian RL, Węglarz WP, Wójcik DK. A three-dimensional stereotaxic atlas of the gray short-tailed opossum (Monodelphis domestica) brain. Brain Struct Funct 2017; 223:1779-1795. [PMID: 29214509 PMCID: PMC5884921 DOI: 10.1007/s00429-017-1540-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 10/15/2017] [Indexed: 12/22/2022]
Abstract
The gray short-tailed opossum (Monodelphis domestica) is a small marsupial gaining recognition as a laboratory animal in biomedical research. Despite numerous studies on opossum neuroanatomy, a consistent and comprehensive neuroanatomical reference for this species is still missing. Here we present the first three-dimensional, multimodal atlas of the Monodelphis opossum brain. It is based on four complementary imaging modalities: high resolution ex vivo magnetic resonance images, micro-computed tomography scans of the cranium, images of the face of the cutting block, and series of sections stained with the Nissl method and for myelinated fibers. Individual imaging modalities were reconstructed into a three-dimensional form and then registered to the MR image by means of affine and deformable registration routines. Based on a superimposition of the 3D images, 113 anatomical structures were demarcated and the volumes of individual regions were measured. The stereotaxic coordinate system was defined using a set of cranial landmarks: interaural line, bregma, and lambda, which allows for easy expression of any location within the brain with respect to the skull. The atlas is released under the Creative Commons license and available through various digital atlasing web services.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Natalia Chlodzinska
- Laboratory of Neurobiology of Development and Evolution, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Krzysztof Turlejski
- Department of Biology and Environmental Science, Cardinal Stefan Wyszynski University, 1/3 Woycicki Street, 01-938, Warsaw, Poland
| | - Tomasz Banasik
- H. Niewodniczański Institute of Nuclear Physics of Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Ruzanna L Djavadian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Władysław P Węglarz
- H. Niewodniczański Institute of Nuclear Physics of Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
4
|
Saunders NR, Dziegielewska KM, Whish SC, Hinds LA, Wheaton BJ, Huang Y, Henry S, Habgood MD. A bipedal mammalian model for spinal cord injury research: The tammar wallaby. F1000Res 2017; 6:921. [PMID: 28721206 PMCID: PMC5497825 DOI: 10.12688/f1000research.11712.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby
(Macropuseugenii), because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P) days (P7–60) tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180), the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions relevant to humans.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sophie C Whish
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lyn A Hinds
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Benjamin J Wheaton
- Centre for Evolutionary and Theoretical Immunology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yifan Huang
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Steve Henry
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
5
|
|