1
|
Schadt T, Prantl V, Grosbusch AL, Bertemes P, Egger B. Regeneration of the flatworm Prosthiostomum siphunculus (Polycladida, Platyhelminthes). Cell Tissue Res 2020; 383:1025-1041. [PMID: 33159580 PMCID: PMC7960593 DOI: 10.1007/s00441-020-03302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Fueled by the discovery of head regeneration in triclads (planarians) two and a half centuries ago, flatworms have been the focus of regeneration research. But not all flatworms can regenerate equally well and to obtain a better picture of the characteristics and evolution of regeneration in flatworms other than planarians, the regeneration capacity and stem cell dynamics during regeneration in the flatworm order Polycladida are studied. Here, we show that as long as the brain remained at least partially intact, the polyclad Prosthiostomum siphunculus was able to regenerate submarginal eyes, cerebral eyes, pharynx, intestine and sucker. In the complete absence of the brain only wound closure was observed but no regeneration of missing organs. Amputated parts of the brain could not be regenerated. The overall regeneration capacity of P. siphunculus is a good fit for category III after a recently established system, in which most polyclads are currently classified. Intact animals showed proliferating cells in front of the brain which is an exception compared with most of the other free-living flatworms that have been observed so far. Proliferating cells could be found within the regeneration blastema, similar to all other flatworm taxa except triclads. No proliferation was observed in epidermis and pharynx. In pulse-chase experiments, the chased cells were found in all regenerated tissues and thereby shown to differentiate and migrate to replace the structures lost upon amputation.
Collapse
Affiliation(s)
- Tamara Schadt
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Veronika Prantl
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Alexandra L Grosbusch
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Philip Bertemes
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Bernhard Egger
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Forsthoefel DJ, Cejda NI, Khan UW, Newmark PA. Cell-type diversity and regionalized gene expression in the planarian intestine. eLife 2020; 9:e52613. [PMID: 32240093 PMCID: PMC7117911 DOI: 10.7554/elife.52613] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Proper function and repair of the digestive system are vital to most animals. Deciphering the mechanisms involved in these processes requires an atlas of gene expression and cell types. Here, we applied laser-capture microdissection (LCM) and RNA-seq to characterize the intestinal transcriptome of Schmidtea mediterranea, a planarian flatworm that can regenerate all organs, including the gut. We identified hundreds of genes with intestinal expression undetected by previous approaches. Systematic analyses revealed extensive conservation of digestive physiology and cell types with other animals, including humans. Furthermore, spatial LCM enabled us to uncover previously unappreciated regionalization of gene expression in the planarian intestine along the medio-lateral axis, especially among intestinal goblet cells. Finally, we identified two intestine-enriched transcription factors that specifically regulate regeneration (hedgehog signaling effector gli-1) or maintenance (RREB2) of goblet cells. Altogether, this work provides resources for further investigation of mechanisms involved in gastrointestinal function, repair and regeneration.
Collapse
Affiliation(s)
- David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umair W Khan
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
3
|
Bertemes P, Grosbusch AL, Egger B. No head regeneration here: regeneration capacity and stem cell dynamics of Theama mediterranea (Polycladida, Platyhelminthes). Cell Tissue Res 2019; 379:301-321. [PMID: 31511984 DOI: 10.1007/s00441-019-03094-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Research on the regeneration potential of flatworms (Platyhelminthes) has been mainly undertaken with planarians (Tricladida), where most species can regenerate a head and no proliferation takes place in the blastema, i.e. the early undifferentiated regenerative tissue. Only few studies are available for an early-branching group within the Platyhelminthes, the Polycladida. Head regeneration in polyclads is not possible, with a single exception from a study performed more than 100 years ago: Cestoplana was reported to be able to regenerate a head if cut a short distance behind the brain. Here, we show that 'Cestoplana' was misdetermined and most likely was the small interstitial polyclad Theama mediterranea. We revisited regeneration capacity and dynamics of T. mediterranea with live observations and stainings of musculature, nervous system, and proliferating and differentiating stem cells. In our experiments, after transversal amputation, only animals retaining more than half of the brain could fully restore the head including the brain. If completely removed, the brain was never found to regenerate to any extent. Different from planarians, but comparable to other free-living flatworms we detected cell proliferation within the posterior regeneration blastema in T. mediterranea. Similar to other free-living flatworms, proliferation did not occur within, but only outside, the differentiating organ primordia. Our results strongly imply that brain regeneration in the absence of the latter is not possible in any polyclad studied so far. Also, it appears that proliferation of stem cells within the regeneration blastema is a plesiomorphy in flatworms and that planarians are derived in this character.
Collapse
Affiliation(s)
- Philip Bertemes
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Alexandra L Grosbusch
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Bernhard Egger
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Nakagawa H, Sekii K, Maezawa T, Kitamura M, Miyashita S, Abukawa M, Matsumoto M, Kobayashi K. A comprehensive comparison of sex-inducing activity in asexual worms of the planarian Dugesia ryukyuensis: the crucial sex-inducing substance appears to be present in yolk glands in Tricladida. ZOOLOGICAL LETTERS 2018; 4:14. [PMID: 29942643 PMCID: PMC5996458 DOI: 10.1186/s40851-018-0096-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Turbellarian species can post-embryonically produce germ line cells from pluripotent stem cells called neoblasts, which enables some of them to switch between an asexual and a sexual state in response to environmental changes. Certain low-molecular-weight compounds contained in sexually mature animals act as sex-inducing substances that trigger post-embryonic germ cell development in asexual worms of the freshwater planarian Dugesia ryukyuensis (Tricladida). These sex-inducing substances may provide clues to the molecular mechanism of this reproductive switch. However, limited information about these sex-inducing substances is available. RESULTS Our assay system based on feeding sex-inducing substances to asexual worms of D. ryukyuensis is useful for evaluating sex-inducing activity. We used the freshwater planarians D. ryukyuensis and Bdellocephala brunnea (Tricladida), land planarian Bipalium nobile (Tricladida), and marine flatworm Thysanozoon brocchii (Polycladida) as sources of the sex-inducing substances. Using an assay system, we showed that the three Tricladida species had sufficient sex-inducing activity to fully induce hermaphroditic reproductive organs in asexual worms of D. ryukyuensis. However, the sex-inducing activity of T. brocchii was sufficient only to induce a pair of ovaries. We found that yolk glands, which are found in Tricladida but not Polycladida, may contain the sex-inducing substance that can fully sexualize asexual worms of D. ryukyuensis. CONCLUSIONS Our results suggest that within Tricladida, there are one or more common compounds or functional analogs capable of fully sexualizing asexual worms of D. ryukyuensis; namely, the crucial sex-inducing substance (hydrophilic and heat-stable, but not a peptide) produced in yolk glands.
Collapse
Affiliation(s)
- Haruka Nakagawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Takanobu Maezawa
- Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama, Okayama, 708-8509 Japan
| | - Makoto Kitamura
- Center for Integrated Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Soichiro Miyashita
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Marina Abukawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Midori Matsumoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522 Japan
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| |
Collapse
|