1
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
2
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
3
|
Hou Z, An L, Han J, Yuan Y, Chen D, Tian J. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish. J Anim Sci Biotechnol 2018; 9:90. [PMID: 30568797 PMCID: PMC6298008 DOI: 10.1186/s40104-018-0304-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050. However, it is impossible to achieve such genetic gain by conventional animal breeding systems. Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells, herein we propose a novel embryo-stem cell breeding system. Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals, the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish. In comparison to the conventional dairy breeding scheme, this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity. However, several major obstacles must be overcome before we can fully use this system in livestock breeding, which include derivation and mantaince of pluripotent stem cells in domestic animals, as well as in vitro induction of primordial germ cells, and subsequent haploid gametes. Thus, we also discuss the potential efforts needed in solving the obstacles for application this novel system, and elaborate on their groundbreaking potential in livestock breeding. This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.
Collapse
Affiliation(s)
- Zhuocheng Hou
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyong Han
- 2State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ye Yuan
- 3Colorado Center for Reproductive Medicine, Denver, USA
| | - Dongbao Chen
- 4Department of Obstetrics and Gynecology, University of California Irvine, Irvine, USA
| | - Jianhui Tian
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Choi KH, Lee DK, Oh JN, Son HY, Lee CK. FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Cell Reprogram 2018; 20:301-311. [PMID: 30204498 DOI: 10.1089/cell.2018.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germ cells are alternative sources for deriving pluripotent stem cells. Because embryonic germ cells (EGCs) possess physiological and developmental features similar to those of embryonic stem cells, pig EGCs are considered a potential tool for generating transgenic animals for agricultural usage. Therefore, in this study, we attempted to establish and characterize pig EGCs from fetal gonads. EGC lines were derived from the genital ridges of porcine fetuses in media containing leukemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and stem cell factor. After establishment, these cells were cultured and stabilized in LIF- or FGF2-containing media. The cell lines were maintained under both conditions over an extended time period and spontaneously differentiated into the three germ layers in vitro. Interestingly, expression of pluripotency markers showed different patterns between cell lines cultured in LIF or FGF2. SSEA4 was only expressed in FGF2-treated pig EGCs (FGF2-pEGCs), not LIF-treated pig EGCs (LIF-pEGCs). Pluripotency genes were upregulated in FGF2-pEGCs, and germline markers were highly expressed, indicating that FGF2 supplements are more efficient in supporting the pluripotency of pEGCs. In conclusion, we verified that FGF2 signaling plays an important role in reprogramming and maintaining pEGCs from fetal gonads.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Dong-Kyung Lee
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Jong-Nam Oh
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Hye-Young Son
- 2 Severance Biomedical Science Institute, Severance Hospital, Yonsei University College of Medicine , Seoul, Korea
| | - Chang-Kyu Lee
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea.,3 Institute of Green Bio Science and Technology, Seoul National University , Pyeong Chang, Kangwon do, Korea
| |
Collapse
|
5
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou XF, Liao H. Small Molecules for Neural Stem Cell Induction. Stem Cells Dev 2018; 27:297-312. [PMID: 29343174 DOI: 10.1089/scd.2017.0282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) from other somatic cells has provided great hopes for transplantation therapies. However, these cells still cannot be used for clinical application due to the low reprogramming and differentiation efficiency beside the risk of mutagenesis and tumor formation. Compared to iPSCs, induced neural stem cells (iNSCs) are easier to terminally differentiate into neural cells and safe; thus, iNSCs hold more opportunities than iPSCs to treat neural diseases. On the other hand, recent studies have showed that small molecules (SMs) can dramatically improve the efficiency of reprogramming and SMs alone can even convert one kind of somatic cells into another, which is much safer and more effective than transcription factor-based methods. In this study, we provide a review of SMs that are generally used in recent neural stem cell induction studies, and discuss the main mechanisms and pathways of each SM.
Collapse
Affiliation(s)
- Donghui Liu
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China .,2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Nimshitha Pavathuparambil Abdul Manaph
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia .,3 Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital , Adelaide, South Australia
| | - Mohammed Al-Hawwas
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Xin-Fu Zhou
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Hong Liao
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
6
|
Chen Q, Zhou H, Hu P. Stemness distinctions between the ectomesenchymal stem cells from neonatal and adult mice. Acta Histochem 2017; 119:822-830. [PMID: 29107325 DOI: 10.1016/j.acthis.2017.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Ectomesenchymal stem cells (EMSCs), a type of adult stem cells derived from cranial neural crest, can be non-invasively harvested from respiratory mucosa and play vital roles in therapies based on their stemness. However, whether donor age has any impact on the stemness of EMSCs remains elusive and is essential for EMSCs-based therapies. To address this, we first cultivated EMSCs from neonatal mice aged 1 week and adult mice aged 3 months or 6 months, and then compared their morphology, proliferative capacity, and pluripotency through various induced differentiation assays. The results showed that neonatal EMSCs were fibroblast-like, more regular compared to adult EMSCs; the proliferative capacity of neonatal EMSCs was higher than that of adult EMSCs. More importantly, after neural, adipogenic, chondrogenic, and osteogenic differentiation, neonatal EMSCs differentiated into respective cell types significantly better than adult EMSCs. Notably, EMSCs from mice aged 3 months differentiated into mesodermal lineages better than those from 6 months old mice after induction. Collectively, these results suggest donor ages have significant impact on the EMSCs from respiratory mucosa.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huangao Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pingping Hu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Wang C, Deng Y, Chen F, Zhu P, Wei J, Luo C, Lu F, Yang S, Shi D. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells. Theriogenology 2016; 91:112-120. [PMID: 28215675 DOI: 10.1016/j.theriogenology.2016.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 12/01/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function.
Collapse
Affiliation(s)
- Caizhu Wang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Peng Zhu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jingwei Wei
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.
| |
Collapse
|