1
|
Baruta G, Flannigan KL, Alston L, Thorne A, Zhang H, De Buck J, Colarusso P, Hirota SA. Mycobacterium avium subspecies paratuberculosis targets M cells in enteroid-derived monolayers through interactions with β1 integrins. Am J Physiol Gastrointest Liver Physiol 2025; 328:G482-G501. [PMID: 40112014 DOI: 10.1152/ajpgi.00250.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025]
Abstract
Paratuberculosis is an infectious disease caused by the bacterium, Mycobacterium avium subspecies paratuberculosis (MAP). MAP infection of ruminants triggers progressive wasting disease characterized by granulomatous lymphadenitis, enteritis, and severe intestinal pathology that often requires early culling of the animal. The resulting economic burden is significant, and MAP exposure in the workplace constitutes a significant zoonotic risk. Although it has been established that the MAP propagates within resident immune cells, less is known about how it traverses the epithelium. It is currently thought that MAP infects the small intestinal epithelium by targeting both enterocytes and M cells, with a potential tropism for the latter. In the current study, we developed and validated an enteroid-based in vitro assay containing functional M cells to identify the target cells for MAP's entry. Upon exposure to MAP, the bacteria were detected within both enterocytes and M cells; however, quantitative image analysis revealed significant tropism for the latter. Complementary studies using the Caco-2/Raji-B coculture system provided similar results. Since other mycobacteria have been shown to initiate cell attachment and entry by using a fibronectin-bridging process, we tested whether these interactions were involved in MAP's targeting of M cells. We found that MAP's M cell tropism was enhanced by fibronectin and that this effect was abolished when monolayers were pretreated with an integrin-blocking peptide. Our data demonstrate that MAP preferentially targets M cells and that this involves a fibronectin-bridging process. Furthermore, our study supports the utility of M cell-containing enteroids to study host-pathogen interaction at the intestinal epithelium.NEW & NOTEWORTHY We developed and validated a novel enteroid-based in vitro infection model with functional M cells and incorporated leading-edge imaging approaches to determine how MAP interacts with the intestinal epithelium. Using this model, we found that MAP preferentially enters M cells and that this process is enhanced by fibronectin opsonization and interactions with M cell-associated b1 integrins-the so-called fibronectin bridging mechanism that is used by other Mycobacterium to mediate cell attachment and entry.
Collapse
Affiliation(s)
- Grace Baruta
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Thorne
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hong Zhang
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Meek HC, Stenfeldt C, Arzt J. Morphological and Phenotypic Characteristics of the Bovine Nasopharyngeal Mucosa and Associated Lymphoid Tissue. J Comp Pathol 2022; 198:62-79. [PMID: 36116893 DOI: 10.1016/j.jcpa.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022]
Abstract
The mammalian nasopharynx is an anatomically complex region of the upper respiratory tract that directly communicates with the nasal cavity, laryngopharynx, oesophagus and trachea. The nasopharyngeal mucosa contains moderate quantities of mucosa-associated lymphoid tissue (MALT) that is appropriately located for immunological sampling but also creates vulnerability to pathogens. In recent years, the nasopharynx has been inculpated in the pathogenesis of important diseases of cattle (foot-and-mouth disease) and humans (COVID-19), yet the tissue has never been described in detail in any species. In order to characterize the morphology and cellular composition of the bovine nasopharynx, samples of mucosa were collected from the nasopharynx of five 8-13-month-old steers and examined using light microscopy, immunohistochemistry and multichannel immunofluorescence. Morphologically, the nasopharyngeal epithelium was highly heterogeneous, with a continuum ranging from stratified squamous epithelium to highly attenuated, follicle-associated epithelium (FAE). Distribution of MALT was similarly regionally variable ranging from absent to clusters of multiple lymphoid follicles. Phenotypic characterization demonstrated dense distributions of dendritic cells and T lymphocytes surrounding lymphoid follicles, which comprised mostly B lymphocytes. The FAE overlaying the lymphoid follicles also contained higher numbers of dendritic cells and lymphocytes compared with the adjacent non-lymphoid epithelium, although cytotoxic T cells were notably scarce in the FAE. The bovine nasopharyngeal lymphoid tissue had comparable elements to other MALTs with specific differences that may help to elucidate the pathogenesis of infectious agents that have specific tropism for this tissue.
Collapse
Affiliation(s)
- Haillie C Meek
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA; Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA.
| |
Collapse
|
3
|
Blake R, Jensen K, Mabbott N, Hope J, Stevens J. The Development of 3D Bovine Intestinal Organoid Derived Models to Investigate Mycobacterium Avium ssp Paratuberculosis Pathogenesis. Front Vet Sci 2022; 9:921160. [PMID: 35859809 PMCID: PMC9290757 DOI: 10.3389/fvets.2022.921160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the etiological agent of Johne's Disease, a chronic enteritis of ruminants prevalent across the world. It is estimated that approximately 50% of UK dairy herds are infected with MAP, but this is likely an underestimate of the true prevalence. Infection can result in reduced milk yield, infertility and premature culling of the animal, leading to significant losses to the farming economy and negatively affecting animal welfare. Understanding the initial interaction between MAP and the host is critical to develop improved diagnostic tools and novel vaccines. Here we describe the characterisation of three different multicellular in vitro models derived from bovine intestinal tissue, and their use for the study of cellular interactions with MAP. In addition to the previously described basal-out 3D bovine enteroids, we have established viable 2D monolayers and 3D apical-out organoids. The apical-out enteroids differ from previously described bovine enteroids as the apical surface is exposed on the exterior surface of the 3D structure, enabling study of host-pathogen interactions at the epithelial surface without the need for microinjection. We have characterised the cell types present in each model system using RT-qPCR to detect predicted cell type-specific gene expression, and confocal microscopy for cell type-specific protein expression. Each model contained the cells present in the original bovine intestinal tissue, confirming they were representative of the bovine gut. Exposure of the three model systems to the K10 reference strain of MAP K10, and a recent Scottish isolate referred to as C49, led to the observation of intracellular bacteria by confocal microscopy. Enumeration of the bacteria by quantification of genome copy number, indicated that K10 was less invasive than C49 at early time points in infection in all model systems. This study shows that bovine enteroid-based models are permissive to infection with MAP and that these models may be useful in investigating early stages of MAP pathogenesis in a physiologically relevant in vitro system, whilst reducing the use of animals in scientific research. Bos taurus: urn:lsid:zoobank.org:act:4C90C4FA-6296-4972-BE6A-5EF578677D64
Collapse
|
4
|
Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS. M cell targeting engineered biomaterials for effective vaccination. Biomaterials 2018; 192:75-94. [PMID: 30439573 DOI: 10.1016/j.biomaterials.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
Abstract
Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Reesor
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Mohammad Azad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Michael Lim
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Wuji Cao
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Simon Guillemette
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|