1
|
Breuer M, Rummler M, Singh J, Maher S, Zaouter C, Jamadagni P, Pilon N, Willie BM, Patten SA. CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. J Bone Miner Res 2024; 39:498-512. [PMID: 38477756 PMCID: PMC11262153 DOI: 10.1093/jbmr/zjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.
Collapse
Affiliation(s)
- Maximilian Breuer
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Jaskaran Singh
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Sabrina Maher
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charlotte Zaouter
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Priyanka Jamadagni
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Départment des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
3
|
Sakashita M, Kondo S, Wada N. Lateral bone ridge expansion and internal tissue replacement for vertebral body growth in Pacific bluefin tuna Thunnus orientalis. J Morphol 2024; 285:e21666. [PMID: 38361265 DOI: 10.1002/jmor.21666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 02/17/2024]
Abstract
Vertebral growth is an essential developmental process to support the expansion of the vertebrate body. In teleosts, the lateral side of the vertebral bodies develops to form different structures among species in the late stages of vertebral growth, although lateral structures are not apparent in the early stages. Lateral structures are one of the structural features that determine the diversity of teleost vertebrae. However, explanations for the formation of lateral structures are conflicting because few reports have investigated the growth of teleost vertebral bodies. To clarify the growth process, we analyzed the morphological changes in the vertebral body of Pacific bluefin tuna Thunnus orientalis at different developmental stages using micro-computed tomography (CT) scans. The micro-CT scans showed that the vertebral centrum formed a plate-like ridge on the lateral side along the cranial-caudal direction and extended laterally with increasing thickness. Simultaneously, the proximal region of the lateral ridges became porous as the vertebrae grew to form bone marrow cavities. Furthermore, we used histological observations to describe the relationship between these morphological changes and osteoblast and osteoclast activities. Osteoblasts accumulated on the distal edges of the lateral ridges, whereas osteoclasts were distributed in the bone marrow cavities. These observations suggest that bone resorption occurs proximally to form bone marrow cavities in addition to bone synthesis at the edges of the lateral ridges. The bone marrow cavities were occupied by blood vessels, extracellular matrix, and adipocytes, and the internal tissue composition changed to increase the area of adipose tissue. Because the ratio of bone volume decreases in large vertebrae, bone formation and resorption are regulated to separate the external cortical and internal trabecular bones to support the vertebrae. This study is the first to report the formation of lateral structures and can be applied to similar lateral structures in the vertebrae of other teleost species.
Collapse
Affiliation(s)
- Misaki Sakashita
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
4
|
Comparative Analysis of miRNA-mRNA Regulation in the Testes of Gobiocypris rarus following 17α-Methyltestosterone Exposure. Int J Mol Sci 2023; 24:ijms24044239. [PMID: 36835651 PMCID: PMC9968023 DOI: 10.3390/ijms24044239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.
Collapse
|
5
|
WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome. Nat Commun 2022; 13:5456. [PMID: 36114168 PMCID: PMC9481537 DOI: 10.1038/s41467-022-33012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractWerner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height. Zebrafish lacking wrn exhibit impairment of bone growth and have shorter body stature. We pinpoint the function of WRN to its helicase domain. We identify short-stature homeobox (SHOX) as a crucial and direct target of WRN and find that the WRN helicase core regulates the transcriptional expression of SHOX via unwinding G-quadruplexes. Consistent with this, shox−/− zebrafish exhibit impaired bone growth, while genetic overexpression of SHOX or shox expression rescues the bone developmental deficiency induced in WRN/wrn-null mutants both in vitro and in vivo. Collectively, we have identified a previously unknown function of WRN in regulating bone development and growth through the transcriptional regulation of SHOX via the WRN helicase domain, thus illuminating a possible approach for new therapeutic strategies.
Collapse
|
6
|
Schulz A, Brendler J, Blaschuk O, Landgraf K, Krueger M, Ricken AM. Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish. J Histochem Cytochem 2019; 67:361-373. [PMID: 30620237 DOI: 10.1369/0022155418824083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the heart, unidirectional blood flow depends on proper heart valve function. As, in mammals, regulatory mechanisms of early heart valve and bone development are shown to contribute to adult heart valve pathologies, we used the animal model zebrafish (ZF, Danio rerio) to investigate the microarchitecture and differentiation of cardiac valve interstitial cells in the transition from juvenile (35 days) to end of adult breeding (2.5 years) stages. Of note, light microscopy and immunohistochemistry revealed major differences in ZF heart valve microarchitecture when compared with adult mice. We demonstrate evidence for rather chondrogenic features of valvular interstitial cells by histological staining and immunodetection of SOX-9, aggrecan, and type 2a1 collagen. Collagen depositions are enriched in a thin layer at the atrial aspect of atrioventricular valves and the ventricular aspect of bulboventricular valves, respectively. At the ultrastructural level, the collagen fibrils are lacking obvious periodicity and orientation throughout the entire valve.
Collapse
Affiliation(s)
- Alina Schulz
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Jana Brendler
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Orest Blaschuk
- Division of Urology, Department of Surgery, McGill University, Montreal, Québec, Canada.,University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents and Integrated Research and Treatment Centre Adiposity Diseases.,University of Leipzig, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Albert M Ricken
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Chen Q, Yokoi H, Suzuki T. Expression profiles of RA synthases and catabolic enzymes in newly hatched and metamorphosing larvae of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2018; 269:60-67. [PMID: 30099032 DOI: 10.1016/j.ygcen.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/27/2023]
Abstract
Retinoic acid (RA) plays various embryogenesis and post-embryogenesis roles in vertebrates. As exposure of metamorphosing flounder larvae to RA has teratogenic effects on skin color and vertebral column development, harmonized RA synthesis and catabolism are likely essential in metamorphic development. To approach understanding of the roles of RA in flounder metamorphic development, we here examined the tissue mRNA expression of RA synthases (aldh1a1, aldh1a2, aldh1a3) and catabolic enzymes (cyp26a1, cyp26b1, cyp26c1) in newly hatched and metamorphosing larvae, and three-month-old juveniles by in situ hybridization (ISH). No ISH signal was detected for any genes from the skin and vertebral column susceptible to the teratogenic effects by RA. Since the intestine expressed aldh1a2 at high level in larvae but not in juvenile, it is a possibility that the larval intestine serves as a source of RA, and RA catabolic enzymes function at the level below sensitivity of ISH at vertebral column and skin development. We found that aldh1a2 and aldh1a3 were expressed along the margin of the tectum and the neurohypophysis of pituitary, respectively, both in contact with the cerebrospinal fluid (CSF), and cyp26b1 at the posterior tectum and cerebellum. We hypothesize that RA is supplied from the tectum and pituitary via the CSF for brain growth and maintenance, and cyp26b1 locally regulates RA contents in the brain.
Collapse
Affiliation(s)
- Qiran Chen
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
8
|
Criswell KE, Coates MI, Gillis JA. Embryonic origin of the gnathostome vertebral skeleton. Proc Biol Sci 2018; 284:rspb.2017.2121. [PMID: 29167367 PMCID: PMC5719183 DOI: 10.1098/rspb.2017.2121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts.
Collapse
Affiliation(s)
- Katharine E Criswell
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA .,Department of Zoology, University of Cambridge, Cambridge, UK.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, UK.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
9
|
Lleras Forero L, Narayanan R, Huitema LF, VanBergen M, Apschner A, Peterson-Maduro J, Logister I, Valentin G, Morelli LG, Oates AC, Schulte-Merker S. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 2018; 7:33843. [PMID: 29624170 PMCID: PMC5962341 DOI: 10.7554/elife.33843] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord.
Collapse
Affiliation(s)
- Laura Lleras Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.,Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | | | - Maaike VanBergen
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Ive Logister
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Andrew C Oates
- The Francis Crick Institute, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
10
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
11
|
Slijepčević MD, Ukropina M, Filipović B, Ivanović A. Ossification and development of vertebrae in the Balkan crested newt Triturus ivanbureschi (Salamandridae, Caudata). ZOOLOGY 2017; 126:164-171. [PMID: 29113765 DOI: 10.1016/j.zool.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 11/30/2022]
Abstract
Vertebral morphology, development, and evolution have been investigated for many decades, especially in the recent evo-devo era. Nevertheless, comparative data on development and ossification modes within the major tetrapod groups are scarce and frequently suffer from the use of a simplistic approach, resulting in simplistic generalizations about the formation of tetrapod vertebrae. Here, we describe the development and ossification of trunk vertebrae in Triturus ivanbureschi (Salamandridae, Caudata) and compare the results with published data on other related taxa. In so doing, we focus on the modes of ossification and development of the centrum and neural arches by analysing three developmental stages defined by the degree of limb development: stages 47, 52, and 62 according to Glücksohn (1932). Our examination of histological sections through trunk vertebrae enabled us to identify three modes of ossification within single trunk vertebrae: (i) perichordal (direct ossification of the connective tissue surrounding the notochord); (ii) perichondrial (direct ossification of the perichondrium, consisting of cartilage-covering connective tissue), and (iii) endochondral (ossification within the preformed cartilage template). We also noted the presence of intravertebral or notochordal cartilage. Although our results indicate that this cartilage develops within the notochord surrounded by the continuous notochordal sheath, more detailed further studies could shed light on its origin and development.
Collapse
Affiliation(s)
- Maja D Slijepčević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", 11000 Belgrade, Serbia.
| | - Mirela Ukropina
- University of Belgrade, Institute of Zoology, Faculty of Biology, 11000 Belgrade, Serbia
| | - Branko Filipović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", 11000 Belgrade, Serbia
| | - Ana Ivanović
- University of Belgrade, Institute of Zoology, Faculty of Biology, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Chen Q, Takagi M, Mogi M, Kikuchi M, Saito Y, Nakamura S, Yokoi H, Seikai T, Uji S, Suzuki T. External Asymmetry and Pectoral Fin Loss in the Bamboo Sole (Heteromycteris japonica): Small-Sized Sole with Potential as a Pleuronectiformes Experimental Model. Zoolog Sci 2017; 34:377-385. [DOI: 10.2108/zs170021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Qiran Chen
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Masako Takagi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Makoto Mogi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Miki Kikuchi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yudai Saito
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Shunya Nakamura
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tadahisa Seikai
- Faculty of Marine Biology, Fukui Prefectural University, Obama 917-0003, Japan
| | - Susumu Uji
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-Ise, Mie 516-0193, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
13
|
Kryvi H, Rusten I, Fjelldal PG, Nordvik K, Totland GK, Karlsen T, Wiig H, Long JH. The notochord in Atlantic salmon (Salmo salar L.) undergoes profound morphological and mechanical changes during development. J Anat 2017; 231:639-654. [PMID: 28786202 PMCID: PMC5643922 DOI: 10.1111/joa.12679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
We present the development of the notochord of the Atlantic salmon (Salmo salar L.), from early embryo to sexually mature fish. Over the salmon's lifespan, profound morphological changes occur. Cells and gross structures of the notochord reorganize twice. In the embryo, the volume of the notochord is dominated by large, vacuolated chordocytes; each cell can be modeled as a hydrostat organized into a larger cellular-hydrostat network, structurally bound together with desmosomes. After the embryo hatches and grows into a fry, vacuolated chordocytes disappear, replaced by extracellular lacunae. The formation of mineralized, segmental chordacentra stiffens the notochord and creates intervertebral joints, where tissue strain during lateral bending is now focused. As development proceeds towards the parr stage, a process of devacuolization and intracellular filament accumulation occur, forming highly dense, non-vacuolated chordocytes. As extracellular lacunae enlarge, they are enclosed by dense filamentous chordocytes that form transverse intervertebral septa, which are connected to the intervertebral ligaments, and a longitudinal notochordal strand. In the vertebral column of pelagic adults, large vacuolated chordocytes reappear; cells of this secondary population have a volume up to 19 000 times larger than the primary vacuolated chordocytes of the early notochord. In adults the lacunae have diminished in relative size. Hydrostatic pressure within the notochord increases significantly during growth, from 525 Pa in the alevins to 11 500 Pa in adults, at a rate of increase with total body length greater than that expected by static stress similarity. Pressure and morphometric measurements were combined to estimate the stress in the extracellular material of the notochordal sheath and intervertebral ligaments and the flexural stiffness of the axial skeleton. The functional significance of the morphological changes in the axial skeleton is discussed in relation to the different developmental stages and locomotor behavior changes over the lifespan of the fish.
Collapse
Affiliation(s)
- Harald Kryvi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Iselin Rusten
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Kari Nordvik
- Department of Biology, University of Bergen, Bergen, Norway
| | - Geir K Totland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Tine Karlsen
- Institute of Biomedicine, University of Bergen, Bergen, Norway
| | - Helge Wiig
- Institute of Biomedicine, University of Bergen, Bergen, Norway
| | - John H Long
- Department of Biology, Department of Cognitive Science, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
14
|
Wu X, Chen Q, Washio Y, Yokoi H, Suzuki T. Excess Retinoic Acid Induces Fusion of Centra by Degenerating Intervertebral Ligament Cells in Japanese flounder,Paralichthys olivaceus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:464-473. [DOI: 10.1002/jez.b.22717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoming Wu
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Qiran Chen
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Youhei Washio
- Fisheries Laboratory; Kindai University; Shirahama Wakayama Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| |
Collapse
|