1
|
Meyer H, Bossen J, Janz M, Müller X, Künzel S, Roeder T, Paululat A. Combined transcriptome and proteome profiling reveal cell-type-specific functions of Drosophila garland and pericardial nephrocytes. Commun Biol 2024; 7:1424. [PMID: 39487357 PMCID: PMC11530456 DOI: 10.1038/s42003-024-07062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Drosophila nephrocytes are specialised cells that share critical functional, morphological, and molecular features with mammalian podocytes. Accordingly, nephrocytes represent a preferred invertebrate model for human glomerular disease. Here, we established a method for cell-specific isolation of the two types of Drosophila nephrocytes, garland and pericardial cells, from animals of different developmental stages and ages. Mass spectrometry-based proteomics and RNA-Seq-based transcriptomics were applied to characterise the proteome and transcriptome of the respective cells in an integrated and complementary manner. We observed characteristic changes in the proteome and transcriptome due to cellular ageing. Furthermore, functional enrichment analyses suggested that larval and adult nephrocytes, as well as garland and pericardial nephrocytes, fulfil distinct physiological functions. In addition, the pericardial nephrocytes were characterised by transcriptomic and proteomic profiles suggesting an atypical energy metabolism with very low oxidative phosphorylation rates. Moreover, the nephrocytes displayed typical signatures of extensive immune signalling and showed an active antimicrobial response to an infection. Factor-specific comparisons identified novel candidate proteins either expressed and secreted by the nephrocytes or sequestered by them. The data generated in this study represent a valuable basis for a more specific application of the Drosophila model in analysing renal cell function in health and disease.
Collapse
Affiliation(s)
- Heiko Meyer
- Department of Zoology & Developmental Biology, University of Osnabrück, 49076, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück-CellNanOs, 49076, Osnabrück, Germany
| | - Judith Bossen
- University of Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Maren Janz
- Department of Zoology & Developmental Biology, University of Osnabrück, 49076, Osnabrück, Germany
| | - Xenia Müller
- University of Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas Roeder
- University of Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany.
| | - Achim Paululat
- Department of Zoology & Developmental Biology, University of Osnabrück, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück-CellNanOs, 49076, Osnabrück, Germany.
| |
Collapse
|
2
|
Sivakumar S, Miellet S, Clarke C, Hartley PS. Insect nephrocyte function is regulated by a store operated calcium entry mechanism controlling endocytosis and Amnionless turnover. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104453. [PMID: 36341969 DOI: 10.1016/j.jinsphys.2022.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Insect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general. Although dynamic changes to intracellular calcium are fundamental to the function of many cell types, there are currently no studies of intracellular calcium signalling in nephrocytes. In this work we aimed to characterise calcium signalling in the pericardial nephrocytes of Drosophila melanogaster. To achieve this, a genetically encoded calcium reporter (GCaMP6) was expressed in nephrocytes to monitor intracellular calcium both in vivo within larvae and in vitro within dissected adults. Larval nephrocytes exhibited stochastically timed calcium waves. A calcium signal could be initiated in preparations of adult nephrocytes and abolished by EGTA, or the store operated calcium entry (SOCE) blocker 2-APB, as well as RNAi mediated knockdown of the SOCE genes Stim and Orai. Neither the presence of calcium-free buffer nor EGTA affected the binding of the endocytic cargo albumin to nephrocytes but they did impair the subsequent accumulation of albumin within nephrocytes. Pre-treatment with EGTA, calcium-free buffer or 2-APB led to significantly reduced albumin binding. Knock-down of Stim and Orai was non-lethal, caused an increase to nephrocyte size and reduced albumin binding, reduced the abundance of the endocytic cargo receptor Amnionless and disrupted the localisation of Dumbfounded at the filtration slit diaphragm. These data indicate that pericardial nephrocytes exhibit stochastically timed calcium waves in vivo and that SOCE mediates the localisation of the endocytic co-receptor Amnionless. Identifying the signals both up and downstream of SOCE may highlight mechanisms relevant to the renal and excretory functions of a broad range of species, including humans.
Collapse
Affiliation(s)
- Shruthi Sivakumar
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, NSW, Australia
| | - Charlotte Clarke
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK.
| |
Collapse
|
3
|
Meyer C, Breitsprecher L, Bataille L, Vincent AJM, Drechsler M, Meyer H, Paululat A. Formation and function of a highly specialised type of organelle in cardiac valve cells. Development 2022; 149:276991. [DOI: 10.1242/dev.200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.
Collapse
Affiliation(s)
- Christian Meyer
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
| | - Leonhard Breitsprecher
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| | - Laetitia Bataille
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI) 3 , Université de Toulouse UMR 5077/CNRS, F-31062 Toulouse , France
| | - Alain J. M. Vincent
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI) 3 , Université de Toulouse UMR 5077/CNRS, F-31062 Toulouse , France
| | - Maik Drechsler
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
| | - Heiko Meyer
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| | - Achim Paululat
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| |
Collapse
|
4
|
Huang Y, Li L, Rong YS. JiangShi(僵尸): a widely distributed Mucin-like protein essential for Drosophila development. G3 GENES|GENOMES|GENETICS 2022; 12:6589892. [PMID: 35595239 PMCID: PMC9339309 DOI: 10.1093/g3journal/jkac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Epithelia exposed to elements of the environment are protected by a mucus barrier in mammals. This barrier also serves to lubricate during organ movements and to mediate substance exchanges between the environmental milieu and internal organs. A major component of the mucus barrier is a class of glycosylated proteins called Mucin. Mucin and mucin-related proteins are widely present in the animal kingdom. Mucin mis-regulation has been reported in many diseases such as cancers and ones involving the digestive and respiratory tracts. Although the biophysical properties of isolated Mucins have been extensively studied, in vivo models remain scarce for the study of their functions and regulations. Here, we characterize the Mucin-like JiangShi protein and its mutations in the fruit fly Drosophila. JiangShi is an extracellular glycoprotein with domain features reminiscent of mammalian nonmembranous Mucins, and one of the most widely distributed Mucin-like proteins studied in Drosophila. Both loss and over-production of JiangShi lead to terminal defects in adult structures and organismal death. Although the physiological function of JiangShi remains poorly defined, we present a genetically tractable model system for the in vivo studies of Mucin-like molecules.
Collapse
Affiliation(s)
- Yueping Huang
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| | - LingLing Li
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
| | - Yikang S Rong
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| |
Collapse
|
5
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
6
|
Heiden S, Siwek R, Lotz ML, Borkowsky S, Schröter R, Nedvetsky P, Rohlmann A, Missler M, Krahn MP. Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2021; 78:3657-3672. [PMID: 33651172 PMCID: PMC8038974 DOI: 10.1007/s00018-021-03769-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/02/2022]
Abstract
Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.
Collapse
Affiliation(s)
- Stefanie Heiden
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rebecca Siwek
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Marie-Luise Lotz
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
7
|
Lemaire M. Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 2020; 320:F145-F160. [PMID: 33283647 DOI: 10.1152/ajprenal.00214.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The various forms of Fanconi renotubular syndromes (FRTS) offer significant challenges for clinicians and present unique opportunities for scientists who study proximal tubule physiology. This review will describe the clinical characteristics, genetic underpinnings, and underlying pathophysiology of the major forms of FRST. Although the classic forms of FRTS will be presented (e.g., Dent disease or Lowe syndrome), particular attention will be paid to five of the most recently discovered FRTS subtypes caused by mutations in the genes encoding for L-arginine:glycine amidinotransferase (GATM), solute carrier family 34 (type Ii sodium/phosphate cotransporter), member 1 (SLC34A1), enoyl-CoAhydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), hepatocyte nuclear factor 4A (HNF4A), or NADH dehydrogenase complex I, assembly factor 6 (NDUFAF6). We will explore how mutations in these genes revealed unexpected mechanisms that led to compromised proximal tubule functions. We will also describe the inherent challenges associated with gene discovery studies based on findings derived from small, single-family studies by focusing the story of FRTS type 2 (SLC34A1). Finally, we will explain how extensive alternative splicing of HNF4A has resulted in confusion with mutation nomenclature for FRTS type 4.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology and Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Miyaki T, Kawasaki Y, Matsumoto A, Kakuta S, Sakai T, Ichimura K. Nephrocytes are part of the spectrum of filtration epithelial diversity. Cell Tissue Res 2020; 382:609-625. [PMID: 33191456 PMCID: PMC7683493 DOI: 10.1007/s00441-020-03313-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
The excretory system produces urine by ultrafiltration via a filtration epithelium. Podocytes are widely found as filtration epithelial cells in eucoelomates. In some animal taxa, including insects and crustaceans, nephrocytes serve to separate toxic substances from the body fluid, in addition to podocytes. Drosophila nephrocytes have been recently utilized as a model system to study podocyte function and disease. However, functionality and cellular architecture are strikingly different between Drosophila nephrocytes and eucoelomate podocytes, and the phylogenetic relationship between these cells remains enigmatic. In this study, using focused-ion beam-scanning electron microscopy (FIB-SEM) tomography, we revealed three-dimensional architecture of decapod nephrocytes with unprecedented accuracy—they filled an enormous gap, which can be called “missing link,” in the evolutionary diversity of podocytes and nephrocytes. Thus, we concluded that nephrocytes are part of the spectrum of filtration epithelial diversity in animal phylogeny.
Collapse
Affiliation(s)
- Takayuki Miyaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuto Kawasaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsumoto
- Department of Biology, Juntendo University School of Medicine, Inzai, Chiba, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Laboratory of Morphology and Image Analysis, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Marchesin V, Pérez-Martí A, Le Meur G, Pichler R, Grand K, Klootwijk ED, Kesselheim A, Kleta R, Lienkamp S, Simons M. Molecular Basis for Autosomal-Dominant Renal Fanconi Syndrome Caused by HNF4A. Cell Rep 2020; 29:4407-4421.e5. [PMID: 31875549 PMCID: PMC6941224 DOI: 10.1016/j.celrep.2019.11.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
HNF4A is a nuclear hormone receptor that binds DNA as an obligate homodimer. While all known human heterozygous mutations are associated with the autosomal-dominant diabetes form MODY1, one particular mutation (p.R85W) in the DNA-binding domain (DBD) causes additional renal Fanconi syndrome (FRTS). Here, we find that expression of the conserved fly ortholog dHNF4 harboring the FRTS mutation in Drosophila nephrocytes caused nuclear depletion and cytosolic aggregation of a wild-type dHNF4 reporter protein. While the nuclear depletion led to mitochondrial defects and lipid droplet accumulation, the cytosolic aggregates triggered the expansion of the endoplasmic reticulum (ER), autophagy, and eventually cell death. The latter effects could be fully rescued by preventing nuclear export through interfering with serine phosphorylation in the DBD. Our data describe a genomic and a non-genomic mechanism for FRTS in HNF4A-associated MODY1 with important implications for the renal proximal tubule and the regulation of other nuclear hormone receptors. HNF4 controls lipid metabolism in Drosophila nephrocytes The kidney disease mutation R85W shows dominant-negative effects in nephrocytes Dephosphorylation at S87 prevents the dominant-negative effects R85W mutation causes mitochondrial dysfunction in reprogrammed renal epithelial cells
Collapse
Affiliation(s)
- Valentina Marchesin
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Albert Pérez-Martí
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Gwenn Le Meur
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Roman Pichler
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Enriko D Klootwijk
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Anne Kesselheim
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Soeren Lienkamp
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
10
|
Selma-Soriano E, Llamusi B, Fernández-Costa JM, Ozimski LL, Artero R, Redón J. Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes. Dis Model Mech 2020; 13:dmm041509. [PMID: 32680845 PMCID: PMC7522021 DOI: 10.1242/dmm.041509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/07/2020] [Indexed: 02/04/2023] Open
Abstract
Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the endocytic pathway in pericardial Drosophila nephrocytes. Knockdown of Rph reduced the expression of the cubilin and stick and stones genes, which encode proteins that are involved in protein uptake and filtration. We also found that reduced Rph expression resulted in a disappearance of the labyrinthine channel structure and a reduction in the number of endosomes, which ultimately leads to changes in the number and volume of nephrocytes. Finally, we demonstrated that the administration of retinoic acid to IR-Rph nephrocytes rescued some altered aspects, such as filtration and molecular uptake, as well as the maintenance of cell fate. According to our data, Rph is crucial for nephrocyte filtration and reabsorption, and it is required for the maintenance of the ultrastructure, integrity and differentiation of the nephrocyte.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Juan Manuel Fernández-Costa
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Lauren Louise Ozimski
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Josep Redón
- Hypertension Unit, Hospital Clínico Universitario, 46010 Valencia, Spain
| |
Collapse
|
11
|
Dehnen L, Janz M, Verma JK, Psathaki OE, Langemeyer L, Fröhlich F, Heinisch JJ, Meyer H, Ungermann C, Paululat A. A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J Cell Sci 2020; 133:jcs247080. [PMID: 32499409 DOI: 10.1242/jcs.247080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bulli-containing trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1.
Collapse
Affiliation(s)
- Lena Dehnen
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Maren Janz
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jitender Kumar Verma
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility Osnabrück (iBiOs), University of Osnabrück, 49076 Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology and Chemistry, Molecular Membrane Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Biology and Chemistry, Genetics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Heiko Meyer
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
12
|
Zheng W, Ocorr K, Tatar M. Extracellular matrix induced by steroids and aging through a G-protein-coupled receptor in a Drosophila model of renal fibrosis. Dis Model Mech 2020; 13:dmm041301. [PMID: 32461236 PMCID: PMC7328168 DOI: 10.1242/dmm.041301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Aldosterone is produced by the mammalian adrenal cortex to modulate blood pressure and fluid balance; however, excessive, prolonged aldosterone promotes fibrosis and kidney failure. How aldosterone triggers disease may involve actions independent of its canonical mineralocorticoid receptor. Here, we present a Drosophila model of renal pathology caused by excess extracellular matrix formation, stimulated by exogenous aldosterone and by insect ecdysone. Chronic administration of aldosterone or ecdysone induces expression and accumulation of collagen-like Pericardin in adult nephrocytes - podocyte-like cells that filter circulating hemolymph. Excess Pericardin deposition disrupts nephrocyte (glomerular) filtration and causes proteinuria in Drosophila, hallmarks of mammalian kidney failure. Steroid-induced Pericardin production arises from cardiomyocytes associated with nephrocytes, potentially reflecting an analogous role of mammalian myofibroblasts in fibrotic disease. Remarkably, the canonical ecdysteroid nuclear hormone receptor, Ecdysone receptor (EcR), is not required for aldosterone or ecdysone to stimulate Pericardin production or associated renal pathology. Instead, these hormones require a cardiomyocyte-associated G-protein-coupled receptor, Dopamine-EcR (DopEcR), a membrane-associated receptor previously characterized in the fly brain to affect behavior. DopEcR in the brain is known to affect behavior through interactions with the Drosophila Epidermal growth factor receptor (Egfr), referred to as dEGFR. Here, we find that the steroids ecdysone and aldosterone require dEGFR in cardiomyocytes to induce fibrosis of the cardiac-renal system. In addition, endogenous ecdysone that becomes elevated with age is found to foster age-associated fibrosis, and to require both cardiomyocyte DopEcR and dEGFR. This Drosophila renal disease model reveals a novel signaling pathway through which steroids may modulate mammalian fibrosis through potential orthologs of DopEcR.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence RI 02912, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence RI 02912, USA
| |
Collapse
|
13
|
Wen P, Zhang F, Fu Y, Zhu JY, Han Z. Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes. J Am Soc Nephrol 2020; 31:1024-1034. [PMID: 32238475 DOI: 10.1681/asn.2019060591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. METHODS We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. RESULTS Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm's highly organized surface structure-essential for filtration-was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. CONCLUSIONS Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling.
Collapse
Affiliation(s)
- Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fujian Zhang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland .,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
15
|
Kawasaki Y, Matsumoto A, Miyaki T, Kinoshita M, Kakuta S, Sakai T, Ichimura K. Three-dimensional architecture of pericardial nephrocytes in Drosophila melanogaster revealed by FIB/SEM tomography. Cell Tissue Res 2019; 378:289-300. [PMID: 31089884 DOI: 10.1007/s00441-019-03037-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Nephrocytes are similar in structure to podocytes and play a role in the isolation of toxic substances from hemolymph in insects. Drosophila melanogaster nephrocytes have recently been used to study podocyte function and disease. However, the three-dimensional ultrastructure of nephrocytes is not clearly understood because their surrounding basement membrane makes it difficult to observe using conventional scanning electron microscopy. We reconstructed the three-dimensional ultrastructure of Drosophila pericardial nephrocytes using serial focused-ion beam/scanning electron microscopy (FIB/SEM) images. The basal surfaces were occupied by foot processes and slit-like spaces between them. The slit-like spaces corresponded to the podocyte filtration slits and were formed by longitudinal infolding/invagination of the basal plasma membrane. The basal surface between the slit-like spaces became the foot processes, which ran almost linearly, and had a "washboard-like" appearance. Both ends of the foot processes were usually anastomosed to neighboring foot processes and thus free ends were rarely observed. We demonstrated that FIB/SEM is a powerful tool to better understand the three-dimensional architecture of nephrocytes.
Collapse
Affiliation(s)
- Yuto Kawasaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akira Matsumoto
- Department of Biology, Juntendo University School of Medicine, Inzai, Chiba, Japan
| | - Takayuki Miyaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mui Kinoshita
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Laboratory of Morphology and Image Analysis, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Odenthal J, Brinkkoetter PT. Drosophila melanogaster and its nephrocytes: A versatile model for glomerular research. Methods Cell Biol 2019; 154:217-240. [PMID: 31493819 DOI: 10.1016/bs.mcb.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glomerular disorders are a predominant cause of chronic kidney diseases and end-stage renal failure. Especially podocytes, epithelial cells which represent the outermost part of the filtration barrier, are affected by disease and experience a gradual loss of function. Despite recent advances in identifying potential pathways underlying podocyte injury, treatment remains challenging. It is therefore desirable to employ suitable model organisms in order to study glomerular disease and elucidate affected pathways. Due to its diverse ways of genetic manipulation and high genomic conservation, Drosophila melanogaster is a powerful model organism for biomedical research. The fly was recently used to assess podocytopathies by exploiting the nephrocyte system. Nephrocytes are spherical cells within the body cavity of the fly responsible for detoxification and clearance of unwanted substances. More importantly, they share many characteristics with mammalian podocytes. Here, we summarize how to use Drosophila as a model organism for podocyte research. We discuss examples of techniques that can be used to genetically manipulate nephrocytes and provide protocols for nephrocyte isolation and for morphological as well as functional analysis.
Collapse
Affiliation(s)
- Johanna Odenthal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Marelja Z, Simons M. Filling the Gap: Drosophila Nephrocytes as Model System in Kidney Research. J Am Soc Nephrol 2019; 30:719-720. [PMID: 30910933 DOI: 10.1681/asn.2019020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zvonimir Marelja
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
18
|
Advances in molecular diagnosis and therapeutics in nephrotic syndrome and focal and segmental glomerulosclerosis. Curr Opin Nephrol Hypertens 2019; 27:194-200. [PMID: 29465426 DOI: 10.1097/mnh.0000000000000408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The widespread adoption of next-generation sequencing by research and clinical laboratories has begun to uncover the previously unknown genetic basis of many diseases. In nephrology, one of the best examples of this is seen in focal and segmental glomerulosclerosis (FSGS) and nephrotic syndrome. We review advances made in 2017 as a result of human and molecular genetic studies as it relates to FSGS and nephrotic syndrome. RECENT FINDINGS There are more than 50 monogenic genes described in steroid-resistant nephrotic syndrome and FSGS, with seven reported in 2017. In individuals presenting with FSGS or nephrotic syndrome before or at the age of 18 years, the commonest genes in which a mutation is found continues to be limited to only a few including NPHS1 and NPHS2 based on multiple studies. For FSGS or nephrotic syndrome that presents after 18 years, mutations in COl4A3/4/5, traditionally associated with Alport syndrome, are increasingly being reported. Despite the extensive genetic heterogeneity in FSGS, there is evidence that some of these genes converge onto common pathways. There are also reports of in-vivo models exploring apolipoprotein 1 biology, variants in which account for part of the increased risk of nondiabetic kidney disease in African-Americans. Finally, genetic testing has several clinical uses including clarification of diagnosis and treatment; identification of suitable young biologic relatives for kidney donation; and preimplantation genetic diagnosis. CRISPR gene editing is currently an experimental tool only, but the recent reports of excising mutations in embryos could be a therapeutic option for individuals with any monogenic disorder in the future. SUMMARY Sequencing efforts are bringing novel variants into investigation and directing the efforts to understand how these lead to disease phenotypes. Expanding our understanding of the genetic basis of health and disease processes is the necessary first step to elaborate the repertoire of therapeutic agents available for patients with FSGS and nephrotic syndrome.
Collapse
|
19
|
Drosophila pericardial nephrocyte ultrastructure changes during ageing. Mech Ageing Dev 2018; 173:9-20. [DOI: 10.1016/j.mad.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
20
|
From genetics to personalized nephrology: kidney research at a tipping point. Cell Tissue Res 2018; 369:1-4. [PMID: 28577188 DOI: 10.1007/s00441-017-2637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Gonçalves S, Patat J, Guida MC, Lachaussée N, Arrondel C, Helmstädter M, Boyer O, Gribouval O, Gubler MC, Mollet G, Rio M, Charbit M, Bole-Feysot C, Nitschke P, Huber TB, Wheeler PG, Haynes D, Juusola J, Billette de Villemeur T, Nava C, Afenjar A, Keren B, Bodmer R, Antignac C, Simons M. A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genet 2018; 14:e1007386. [PMID: 29768408 PMCID: PMC5973622 DOI: 10.1371/journal.pgen.1007386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/29/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.
Collapse
Affiliation(s)
- Sara Gonçalves
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Laboratory of Epithelial Biology and Disease, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Julie Patat
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Noelle Lachaussée
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Arrondel
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Geraldine Mollet
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marlène Rio
- Department of Genetics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Marina Charbit
- Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Patrick Nitschke
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, United States of America
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, United States of America
| | - Jane Juusola
- GeneDx, Inc, Gaithersburg, MD, United States of America
| | - Thierry Billette de Villemeur
- Sorbonne Université, UPMC, GRC ConCer-LD and AP-HP, Hôpital Trousseau, Service de Neuropédiatrie—Pathologie du développement, Paris, France
- Centre de référence des déficits intellectuels de causes rares, Inserm U 1141, Paris, France
| | - Caroline Nava
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moèlle Épinière (ICM), Paris, France
- AP-HP, GH Pitié-Salpêtrière, Department of Genetics, Unit of Developmental Genomics, Paris, France
| | - Alexandra Afenjar
- AP-HP, Hôpital Trousseau, Centre de référence des malformations et maladies congénitales du cervelet, Département de génétique et embryologie médicale, Paris, France
| | - Boris Keren
- AP-HP, GH Pitié-Salpêtrière, Department of Genetics, Unit of Developmental Genomics, Paris, France
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Genetics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- * E-mail: (CA); (MS)
| | - Matias Simons
- Laboratory of Epithelial Biology and Disease, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes—Sorbonne Paris Cité, Imagine Institute, Paris, France
- * E-mail: (CA); (MS)
| |
Collapse
|
22
|
Kesselheim A, Ashton E, Bockenhauer D. Potential and pitfalls in the genetic diagnosis of kidney diseases. Clin Kidney J 2017; 10:581-585. [PMID: 28980668 PMCID: PMC5622903 DOI: 10.1093/ckj/sfx075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing has dramatically decreased the cost of gene sequencing, facilitating the simultaneous analysis of multiple genes at the same time; obtaining a genetic result for an individual patient has become much easier. The article by Ars and Torra in this issue of the Clinical Kidney Journal provides examples of the ever-increasing ability to understand a given patient's disease on the molecular level, so that in some cases not only the causative variants in a disease gene are identified, but also potential modifiers in other genes. Yet, with increased sequencing, a large number of variants are discovered that are difficult to interpret. These so-called 'variants of uncertain significance' raise important questions: when and how can pathogenicity be clearly attributed? This is of critical importance, as there are potentially serious consequences attached: decisions about various forms of treatment and even about life and death, such as termination of pregnancy, may hinge on the answer to these questions. Geneticists, thus, need to use the utmost care in the interpretation of identified variants and clinicians must be aware of this problem. We here discuss the potential of genetics to facilitate personalized treatment, but also the pitfalls and how to deal with them.
Collapse
Affiliation(s)
- Anne Kesselheim
- Centre for Nephrology, University College London, London, UK
| | - Emma Ashton
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- North East Thames Regional Genetics Service, Molecular Genetics, London, UK
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Helmstädter M, Huber TB, Hermle T. Using the Drosophila Nephrocyte to Model Podocyte Function and Disease. Front Pediatr 2017; 5:262. [PMID: 29270398 PMCID: PMC5725439 DOI: 10.3389/fped.2017.00262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease.
Collapse
Affiliation(s)
- Martin Helmstädter
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Hermle
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|