1
|
Nakakura T, Horiguchi K, Suzuki T. Collagen XIII Is the Key Molecule of Neurovascular Junctions in the Neuroendocrine System. Neuroendocrinology 2024; 114:658-669. [PMID: 38643753 DOI: 10.1159/000538976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Axons of magnocellular neurosecretory cells project from the hypothalamus to the posterior lobe (PL) of the pituitary. In the PL, a wide perivascular space exists between the outer basement membrane (BM), where nerve axons terminate, and the inner BM lining the fenestrated capillaries. Hypothalamic axon terminals and outer BMs in the PL form neurovascular junctions. We previously had found that collagen XIII is strongly localized in the outer BMs. In this study, we investigated the role of collagen XIII in the PL of rat pituitaries. METHODS We first studied the expression of Col13a1, the gene encoding the α1 chains of collagen XIII, in rat pituitaries via quantitative real-time polymerase chain reaction and in situ hybridization. We observed the distribution of COL13A1 in the rat pituitary using immunohistochemistry and immunoelectron microscopy. We examined the expression of Col13a1 and the distribution of COL13A1 during the development of the pituitary. In addition, we examined the effects of water deprivation and arginine vasopressin (AVP) signaling on the expression of Col13a1 in the PL. RESULTS Col13a1 was expressed in NG2-positive pericytes, and COL13A1 signals were localized in the outer BM of the PL. The expression of Col13a1 was increased by water deprivation and was regulated via the AVP/AVPR1A/Gαq/11 cascade in pericytes of the PL. CONCLUSION These results suggest that pericytes surrounding fenestrated capillaries in the PL secrete COL13A1 and are involved in the construction of neurovascular junctions. COL13A1 is localized in the outer BM surrounding capillaries in the PL and may be involved in the connection between capillaries and axon terminals.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
2
|
Nakakura T, Tanaka H, Suzuki T. Caveolae-mediated endocytosis pathway regulates endothelial fenestra homeostasis in the rat pituitary. Biochem Biophys Res Commun 2023; 675:177-183. [PMID: 37506534 DOI: 10.1016/j.bbrc.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Endothelial fenestrae are transcellular pores separated by diaphragms formed by plasmalemma vesicle-associated proteins (PLVAP) and function as channels for peptide hormones and other substances. Caveola, a key regulator of clathrin-independent endocytosis, may be involved in the invagination and fusion of plasma membranes, which are essential for fenestra formation. In this study, we first found that caveolin-1 and -2, the major components of caveolae, was localized in fenestrated endothelial cells in the anterior lobe of the rat pituitary by immunohistochemistry. As we also observed caveolae in the endothelial cells of the anterior lobe of the rat pituitary by transmission electron microscopy, we studied the relationship between the caveolae-mediated endocytosis pathway and fenestrae structure in cultured endothelial cells isolated from the anterior lobe of the rat pituitary (CECAL) by immunofluorescence staining and scanning electron microscopy. The inhibition of caveolae-mediated endocytosis by genistein enlarged the PLVAP-positive oval-shaped structure that represented the sieve plate and induced the formation of a doughnut-shaped bulge around the fenestra in CECAL. In contrast, the acceleration of caveolae-mediated endocytosis by okadaic acid induced the diffusion of PLVAP-positive signals in the cytoplasm and reduced the number of fenestrae in CECAL. These results indicate that the caveolae-mediated endocytosis pathway is involved in the fenestra homeostasis in the fenestrated endothelial cells of the rat pituitary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, 060-8556, Japan
| |
Collapse
|
3
|
Regulation of fenestra formation via actin-dynamin2 interaction in rat pituitary endothelial cells. Cell Tissue Res 2022; 390:441-451. [PMID: 36102975 DOI: 10.1007/s00441-022-03685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
Endothelial fenestrae are transcellular pores divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). They function as a channel for peptide hormones and other substances. Invagination of the plasma membrane is necessary for the fenestra formation. The actin cytoskeleton is essential for scission of endocytic vesicles from the invaginated plasma membrane. Therefore, we examined the involvement of the actin cytoskeleton in fenestra formation in cultured endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, using immunofluorescence and scanning electron microscopy. Inhibition of polymerization and depolymerization of the actin cytoskeleton by latrunculin A and jasplakinolide, respectively, remarkably increased the PLVAP-positive sieve plate area and number of fenestrae. Jasplakinolide significantly affected the arrangement of the fenestra on the cell surface, resulting in parallel serpentine furrows of the fenestra. These results suggest that the actin cytoskeleton not only induces fenestra formation but also regulates cell arrangement. Dynamin is a scission protein of the invaginated plasma membrane and interacts with the actin cytoskeleton. We found that dynamin2 is mainly expressed in the endothelial cells of the rat AL. We then investigated the function of dynamin2 by the treatment with dyngo-4a, a potent inhibitor of dynamin1 and dynamin2, on the fenestra formation. As a result, the PLVAP-positive area is significantly increased by the treatment. These results show that the actin-dynamin2 interaction is essential for the control of the fenestra formation in endothelial cells of rat AL. In conclusion, the actin cytoskeleton and dynamin2 function as regulators of endothelial fenestra formation.
Collapse
|
4
|
Nakakura T, Suzuki T, Tanaka H, Arisawa K, Miyashita T, Nekooki-Machida Y, Kurosawa T, Tega Y, Deguchi Y, Hagiwara H. Fibronectin is essential for formation of fenestrae in endothelial cells of the fenestrated capillary. Cell Tissue Res 2021; 383:823-833. [PMID: 32910242 DOI: 10.1007/s00441-020-03273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Endothelial fenestrae are transcellular pores that pierce the capillary walls in endocrine glands such as the pituitary. The fenestrae are covered with a thin fibrous diaphragm consisting of the plasmalemma vesicle-associated protein (PLVAP) that clusters to form sieve plates. The basal surface of the vascular wall is lined by basement membrane (BM) composed of various extracellular matrices (ECMs). However, the relationship between the ECMs and the endothelial fenestrae is still unknown. In this study, we isolated fenestrated endothelial cells from the anterior lobe of the rat pituitary, using a dynabeads-labeled antibody against platelet endothelial cell adhesion molecule 1 (PECAM1). We then analyzed the gene expression levels of several endothelial marker genes and genes for integrin α subunits, which function as the receptors for ECMs, by real-time polymerase chain reaction (PCR). The results showed that the genes for the integrin α subunit, which binds to collagen IV, fibronectin, laminin-411, or laminin-511, were highly expressed. When the PECAM1-positive cells were cultured for 7 days on collagen IV-, fibronectin-, laminins-411-, or laminins-511-coated coverslips, the sieve plate structures equipped with probably functional fenestrae were maintained only when the cells were cultured on fibronectin. Additionally, real-time PCR analysis showed that the fibronectin coating was effective in maintaining the expression pattern of several endothelial marker genes that were preferentially expressed in the endothelial cells of the fenestrated capillaries. These results indicate that fibronectin functions as the principal factor in the maintenance of the sieve plate structures in the endothelial cells of the fenestrated capillary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| | - Hideyuki Tanaka
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Kenjiro Arisawa
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshio Miyashita
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
5
|
Nakakura T, Suzuki T, Horiguchi K, Tanaka H, Arisawa K, Miyashita T, Nekooki-Machida Y, Hagiwara H. Fibronectin-integrin signaling regulates PLVAP localization at endothelial fenestrae by microtubule stabilization. Cell Tissue Res 2021; 384:449-463. [PMID: 33447878 DOI: 10.1007/s00441-020-03326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Endothelial fenestrae are the transcellular pores existing on the capillary walls which are organized in clusters referred to as sieve plates. They are also divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). In this study, we examined the involvement of fibronectin signaling in the formation of fenestra and diaphragm in endothelial cells. Results showed that Itga5 and Itgb1 were expressed in PECAM1-positive endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, and integrin α5 was localized at the fenestrated capillaries of the rat pituitary and cultured PECAM1-positive endothelial cells isolated from AL (CECAL). Inhibition of both integrin α5β1 and FAK, a key molecule for integrin-microtubule signaling, respectively, by ATN-161 and FAK inhibitor 14, caused the delocalization of PLVAP at the sieve plates and depolymerization of microtubules in CECAL. Paclitaxel prevented the delocalization of PLVAP by the inhibition of integrin α5β1. Microtubule depolymerization induced by colcemid also caused the delocalization of PLVAP. Treatment of CECAL with ATN-161 and colcemid caused PLVAP localization at the Golgi apparatus. The localization of PLVAP at the sieve plates was inhibited by BFA treatment in a time-dependent manner and spread diffusely to the cytoplasm. These results indicate that a constant supply of PLVAP proteins by the endomembrane system via the Golgi apparatus is essential for the localization of PLVAP at sieve plates. In conclusion, the endomembrane transport pathway from the Golgi apparatus to sieve plates requires microtubule cytoskeletons, which are regulated by fibronectin-integrin α5β1 signaling.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan.
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Hideyuki Tanaka
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenjiro Arisawa
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Miyashita
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Nekooki-Machida Y, Hagiwara H. Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 2020; 53:191-197. [PMID: 32632910 DOI: 10.1007/s00795-020-00260-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Acetylation is a well-studied post-translational modification (PTM) of tubulin. Acetylated tubulin is present in the centrioles, primary cilia, and flagella, which contain long-lived stable microtubules. Tubulin acetylation plays an important role in cellular activities including cell polarity, cell migration, vesicle transport, and cell development. Cryo-electron microscopy reconstructions have revealed conformational changes in acetylated tubulin, revealing a reduction in intermonomer interactions among tubulins and an increase in microtubule elasticity. The kinetics of conformational changes in acetylated tubulin may elucidate microtubule functions in these cellular activities. Abnormal tubulin acetylation has been implicated in neurodegenerative disorders, ciliopathies, and cancers. Thus, it is important to elucidate the mechanisms underlying tubulin acetylation and its effects on cellular activity to understand these diseases and to design potential therapeutic strategies. This review discusses the cellular distribution and dynamics of acetylated tubulin and its role in regulating cellular activities.
Collapse
Affiliation(s)
- Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
7
|
Zhang X, Deng XH, Song Z, Croen B, Carballo CB, Album Z, Zhang Y, Bhandari R, Rodeo SA. Matrix Metalloproteinase Inhibition With Doxycycline Affects the Progression of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Rupture: Evaluation in a New Nonsurgical Murine ACL Rupture Model. Am J Sports Med 2020; 48:143-152. [PMID: 31756130 DOI: 10.1177/0363546519887158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Doxycycline has broad-spectrum activity as a matrix metalloproteinase (MMP) inhibitor and thus could reduce the progression of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) rupture. HYPOTHESIS Doxycycline would inhibit progression of PTOA in a murine ACL rupture model. STUDY DESIGN Controlled laboratory study. METHODS For the in vitro study, cadaveric C57BL/6 male mice knees (N = 108) were used for the development of a nonsurgical ACL rupture model. For the in vivo study, 24 C57BL/6 male mice then underwent ACL rupture with our manual procedure and were divided into 4 groups: untreated control; doxycycline, 10 mg/kg/d; doxycycline, 50 mg/kg/d; and doxycycline, 100 mg/kg/d. Doxycycline was administered in drinking water beginning immediately after ACL rupture. Radiographic imaging and paw prints were evaluated at 3, 7, 14, and 28 days. The foot length and toe spread were analyzed as measures of function. Histology and MMP-13 immunohistochemistry were done at 4 weeks. RESULTS Radiographs demonstrated anterior tibial subluxation and meniscal extrusion after ACL rupture, confirming knee joint instability without fractures. Statistically significant differences in gait were found between the intact and experimental groups. Histologic examination demonstrated cartilage damage, meniscal tears, and mild osteoarthritis after ACL rupture, similar to what occurs in human patients. Hypertrophy of the posterior horn of the medial and lateral meniscus was found, and tears of the posterior horn of the menisci were common. All doxycycline groups had a lower score than the untreated control group, indicating less cartilage damage. The posterior tibia of the untreated group had the most cartilage damage as compared with the 3 doxycycline groups, with a significant difference between the untreated and 50-mg/kg/d doxycycline groups, suggesting that the latter dose may protect against proteoglycan loss and decrease the progression of osteoarthritis. The nondoxycycline group had the highest synovial inflammation score among all groups, indicating that doxycycline has an inhibitory effect on synovitis. There was significantly lower MMP-13 expression on the tibia in the doxycycline-treated groups, with a positive correlation between doxycycline concentration and MMP-13 inhibition. CONCLUSION Modulation of MMP-13 activity by doxycycline treatment may offer a novel biological pathway to decrease the progression of PTOA after ACL rupture. CLINICAL RELEVANCE Doxycycline is an approved, readily available drug with infrequent side effects of photosensitivity and gastrointestinal symptoms. Future clinical trials could evaluate doxycycline to reduce or prevent progressive cartilage damage after ACL rupture.
Collapse
Affiliation(s)
- Xueying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zhe Song
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zoe Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Reyna Bhandari
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
8
|
Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med Mol Morphol 2018; 51:217-226. [PMID: 29869029 DOI: 10.1007/s00795-018-0195-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
Acetylation of α-tubulin is a well-studied posttranscriptional modification, which is mostly catalyzed by α-tubulin N-acetyltransferase (ATAT1). ATAT1 possibly affects various cellular functions related with microtubules, such as intracellular transport, cell motility, cilia formation, and neuronal signaling. Here, we analyzed the subcellular localization of immunolabeled ATAT1 in human fibroblast KD cells through the cell cycle using confocal laser scanning microscopy. ATAT1 dramatically changed its localization through the cell cycle, depending on the mitotic phase. In interphase, immunolabeled ATAT1 was observed in centrioles, nuclei, and basal bodies if the cells projected primary cilia. ATAT1 was intensely detected as clusters in the nuclei in the G1-G2 phase. In telophase, ATAT1 colocalized with chromatids and spindle poles, and ultimately migrated to the daughter nucleus, newly synthesized centrioles, and midbody. The nucleolus is a core region of ribosomal RNA transcription, and the midbody is associated with severing and depolymerizing of microtubules in the stembody. The specific distributions of ATAT1 through the cell cycle suggest multiple functions of ATAT1, which could include acetylation of microtubules, RNA transcription activity, severing microtubules, and completion of cytokinesis.
Collapse
|