1
|
Lademann F, Rijntjes E, Köhrle J, Tsourdi E, Hofbauer LC, Rauner M. Hyperthyroidism-driven bone loss depends on BMP receptor Bmpr1a expression in osteoblasts. Commun Biol 2024; 7:548. [PMID: 38719881 PMCID: PMC11078941 DOI: 10.1038/s42003-024-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, Lian JB, Stein JL, Rosa AL, Beloti MM. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. BIOMATERIALS ADVANCES 2022; 134:112548. [PMID: 35012895 PMCID: PMC9098699 DOI: 10.1016/j.msec.2021.112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.
Collapse
Affiliation(s)
- Rayana L. Bighetti-Trevisan
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana O. Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Jonathan A. R. Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Coralee E. Tye
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adalberto L. Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M. Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil,Corresponding author at: School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904 Ribeiraõ Preto, SP, Brazil. (M.M. Beloti)
| |
Collapse
|
6
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, Weidner H, Hintze V, Campbell G, Petzold A, Lemaitre R, Henry I, Bellido T, Theurl I, Altamura S, Colucci S, Muckenthaler MU, Schett G, Komla Ebri D, Bassett JHD, Williams GR, Platzbecker U, Hofbauer LC. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat Metab 2019; 1:111-124. [PMID: 30886999 PMCID: PMC6420074 DOI: 10.1038/s42255-018-0005-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Torino, Torino, Italy
| | | | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Juliane Salbach-Hirsch
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Graeme Campbell
- Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Regis Lemaitre
- Max Planck Institute for Cell Biology and Genetics, Protein Unit, Dresden, Germany
| | - Ian Henry
- Max Planck Institute for Cell Biology and Genetics, Scientific Computing Facility, Dresden, Germany
| | - Teresita Bellido
- Department of Anatomy and Cell Biology and Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Igor Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Davide Komla Ebri
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Uwe Platzbecker
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Medicine II, University Clinic Leipzig, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|