1
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
3
|
Gwili N, Jones SJ, Amri WA, Carr IM, Harris S, Hogan BV, Hughes WE, Kim B, Langlands FE, Millican-Slater RA, Pramanik A, Thorne JL, Verghese ET, Wells G, Hamza M, Younis L, El Deeb NMF, Hughes TA. Transcriptome profiles of stem-like cells from primary breast cancers allow identification of ITGA7 as a predictive marker of chemotherapy response. Br J Cancer 2021; 125:983-993. [PMID: 34253873 PMCID: PMC8476506 DOI: 10.1038/s41416-021-01484-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. METHODS Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. RESULTS Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. CONCLUSIONS This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.
Collapse
Affiliation(s)
- Noha Gwili
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Stacey J. Jones
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Waleed Al Amri
- grid.416132.30000 0004 1772 5665Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman
| | - Ian M. Carr
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - Sarah Harris
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Brian V. Hogan
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - William E. Hughes
- grid.414235.50000 0004 0619 2154Children’s Medical Research Institute, Westmead, NSW Australia ,grid.1005.40000 0004 4902 0432St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Baek Kim
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Fiona E. Langlands
- Department of Breast Surgery, Bradford Teaching Hospitals NHS Trust, Bradford, UK
| | | | - Arindam Pramanik
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - James L. Thorne
- grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Eldo T. Verghese
- grid.443984.6Department of Histopathology, St. James’s University Hospital, Leeds, UK
| | - Geoff Wells
- grid.83440.3b0000000121901201School of Pharmacy, University College London, London, UK
| | - Mervat Hamza
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla Younis
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nevine M. F. El Deeb
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Thomas A. Hughes
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
5
|
Colacurci N, Schettino MT, Grimaldi V, De Luca FP, Mansueto G, Costa D, Cacciatore F, De Franciscis P, Napoli C. Flow Cytometry Characterization of Pluripotent Transmembrane Glycoproteins on Resident Cervix Uteri Cells in Patients Screened for Cervical Cancer. Cancer Invest 2020; 38:228-239. [PMID: 32208057 DOI: 10.1080/07357907.2020.1742349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to characterize both by flow cytometry analysis and immunohistochemistry cervix uteri cells of nulliparous women screened for cervical intraepithelial neoplasia (CIN) in comparison to a group without CIN by using mesenchymal stem cell-like and hematopoietic lineage markers. A significant expression for CD29, CD38, HLA-I, and HLA-II was correlated positively to the CIN degree and it was more relevant in patients positive for human papilloma virus (HPV). Thus, identification and detailed characterization of pluripotent resident in uteri cells could be a promising therapeutic target.
Collapse
Affiliation(s)
- Nicola Colacurci
- Obstetrics and Gynecology, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Schettino
- Obstetrics and Gynecology, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Grimaldi
- Department of Advanced Medical and Surgical Sciences. U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Paolo De Luca
- Department of Advanced Medical and Surgical Sciences. U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Biomedical Sciences, Legal Medicine Unit, Federico II University of Naples, Naples, Italy
| | - Dario Costa
- Department of Advanced Medical and Surgical Sciences. U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Pasquale De Franciscis
- Obstetrics and Gynecology, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences. U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Schmied BJ, Riegg F, Zekri L, Grosse-Hovest L, Bühring HJ, Jung G, Salih HR. An Fc-Optimized CD133 Antibody for Induction of Natural Killer Cell Reactivity against Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11060789. [PMID: 31181683 PMCID: PMC6627285 DOI: 10.3390/cancers11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The introduction of monoclonal antibodies (mAbs) has largely improved treatment options for cancer patients. The ability of antitumor mAbs to elicit antibody-dependent cellular cytotoxicity (ADCC) contributes to a large extent to their therapeutic efficacy. Many efforts accordingly aim to improve this important function by engineering mAbs with Fc parts that display enhanced affinity to the Fc receptor CD16 expressed, e.g., on natural killer (NK) cells. Here we characterized the CD133 mAb 293C3-SDIE that contains an engineered Fc part modified by the amino acid exchanges S239D/I332E—that reportedly increase the affinity to CD16—with regard to its ability to induce NK reactivity against colorectal cancer (CRC). 293C3-SDIE was found to be a stable protein with favorable binding characteristics achieving saturating binding to CRC cells at concentrations of approximately 1 µg/mL. While not directly affecting CRC cell growth and viability, 293C3-SDIE potently induced NK cell activation, degranulation, secretion of Interferon-γ, as well as ADCC resulting in potent lysis of CRC cell lines. Based on the preclinical characterization presented in this study and the available data indicating that CD133 is broadly expressed in CRC and represents a negative prognostic marker, we conclude that 293C3-SDIE constitutes a promising therapeutic agent for the treatment of CRC and thus warrants clinical evaluation.
Collapse
Affiliation(s)
- Bastian J Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| | - Fabian Riegg
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- Department for Immunology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | | | - Hans-Jörg Bühring
- Department of Hematology and Oncology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Gundram Jung
- Department for Immunology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| |
Collapse
|