1
|
Tao X, Chen H, Zhu Z, Ren T, Zhen H, Sun X, Song Y, Xu X, Song Z, Liu J. Astrocyte-conditional knockout of MOB2 inhibits the phenotypic conversion of reactive astrocytes from A1 to A2 following spinal cord injury in mice. Int J Biol Macromol 2025; 300:140289. [PMID: 39863205 DOI: 10.1016/j.ijbiomac.2025.140289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice. MOB2 modulated A1/A2 transformation in a primary astrocyte reactive cell model. Therefore, we constructed MOB2 conditional knockout mice (MOB2GFAP-CKO) and discovered that conditional knockout of MOB2 inhibited the conversion of reactive astrocytes from A1 to A2 and hindered spinal cord function recovery. Mechanistically, MOB2 increased the activation of PI3K-AKT signaling to promote A1/A2 transformation in vitro, whereas sc79 (an AKT activator) reversed the subtype transformation of reactive astrocytes and improved functional recovery in MOB2GFAP-CKO mice after SCI. Taken together, study provides the first insights into how MOB2 acts as a novel regulator to promote the conversion this of the reactive astrocyte phenotype from A1 to A2, showing great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Xin Tao
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China; Department of Orthopedics, The People's Hospital of Liyang, Liyang 213300, Jiangsu, People's Republic of China
| | - Haining Chen
- Department of Orthopedics, The First Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, People's Republic of China
| | - Zhenghuan Zhu
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Tianran Ren
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Hongming Zhen
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xiaoliang Sun
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, Maciejczyk A, Hułas-Stasiak M, Skalicka-Woźniak K, Rzeski W, Pawlikowska-Pawlęga B, Jakubowicz-Gil J. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3147-3161. [PMID: 39352533 PMCID: PMC11919984 DOI: 10.1007/s00210-024-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 03/19/2025]
Abstract
Anaplastic astrocytoma and glioblastoma multiforme are infiltrating and vascularized gliomas with a high degree of chemoresistance and metastasis. Our previous studies have shown that osthole may be of great importance in the treatment of gliomas. Therefore, in this work, for the first time, coumarin was used in combination with LY294002-an inhibitor of the PI3K-Akt/PKB-mTOR pathway, which is overly active in gliomas. MOGGCCM and T98G cells were incubated with osthole and LY294002, alone and in combination. Staining with specific fluorochromes was used to visualize cell death and the scratch test to assess the migration. The level of proteins was estimated by immunoblotting. Forming protrusions were visualized by SEM, and immunocytochemistry was used to determine the localization of proteins. Additionally, the expression of Bcl-2, beclin 1 and Raf kinase was silenced using specific siRNA. The obtained results showed that osthole in combination with LY294092 effectively inhibited the migration of glioma cells by reducing the level of metaloproteinases and Rho family proteins, as well as decreasing the level of N-cadherin. In addition, the combination of compounds induced apoptosis. New combination of compounds shows a high pro-apoptotic potential and also inhibits the migration of gliomas cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
3
|
Huang G, Yin W, Zhao X, Xu M, Wang P, Li R, Zhou L, Tang W, Jiao J. Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:118961. [PMID: 39653105 DOI: 10.1016/j.jep.2024.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 01/04/2025]
Abstract
In China, Osteoking is a commonly used treatment and preventive measure for osteoporosis. The pathophysiology of osteoporosis is closely associated with apoptosis; however, it remains unclear whether the role of Osteoking in promoting bone formation is linked to apoptosis. AIM OF STUDY This study aims to investigate whether Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via the PI3K/AKT signaling pathway and to conduct a detailed exploration of this mechanism. The goal is to provide a theoretical basis for the clinical application of Osteoking in osteoporosis treatment. METHODS A rat model of osteoporosis was established through bilateral ovariectomy (OVX), followed by treatment with Osteoking. After ten weeks of therapy, BMD was evaluated. The biomechanics of the left tibia were measured, the left femur was sequenced, and the right tibia was stained using histomorphometric and Masson's staining methods. Peripheral serum was collected to measure bone-related markers, including E2, PINP, and CTX. RNA-Seq results were verified using the remaining bone samples. Comparative analysis demonstrated the efficacy of Osteoking in treating osteoporosis and provided preliminary insights into the underlying mechanisms. Primary BMSCs were cultured using bone marrow apposition. CCK8 assays were conducted to screen the intervention conditions of Osteoking and LY294002. Various concentrations of Osteoking-containing serum and LY294002 were tested separately to determine the optimal intervention concentration for drug delivery. The impact of Osteoking on lipid formation was also evaluated. Following treatment of BMSCs from OVX rats with Sham serum, OVX serum, OVX + LY294002 serum, and Osteoking + LY294002 serum, the expression of PI3K/AKT/mTOR, osteogenesis-related regulatory factors, and apoptosis-related regulatory factors was assessed. Flow cytometry was employed to evaluate apoptosis in BMSCs. RESULTS Osteoking significantly improved whole-body BMD and bone biomechanical indices in OVX rats. It also significantly elevated the serum levels of E2 and PINP while reducing the level of CTX, which significantly improved bone microstructure and promoted new bone formation. RNA-seq analysis indicated that the therapeutic mechanism involved the PI3K/AKT signaling pathway. Osteoking increased the expression of RUNX2 and decreased the expression of PPAR-γ, a marker of lipogenesis, in OVX rats. Extraction of BMSCs for subsequent studies revealed a significant reduction in proliferation and osteogenic differentiation, along with an increase in lipogenic differentiation, in the OVX group. Osteoking treatment inhibited the expression of PPAR-γ and increased the expression of RUNX2 in BMSCs. Additionally, Osteoking reversed the LY294002-mediated inhibition of PI3K/AKT/mTOR signaling pathway activation, increased the expression of the apoptosis-protecting protein Bcl2, and decreased the expression of apoptosis-associated proteins Caspase3 and Bax. CONCLUSION Osteoking markedly improved bone microstructure, biomechanics, and bone density in OVX rats. Osteoking-containing serum reversed the imbalance in lineage differentiation in OVX rats, characterized by reduced osteogenic differentiation and increased lipid differentiation of BMSCs. Furthermore, Osteoking-containing serum significantly increased BMSC proliferation and prevented apoptosis in OVX rats through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guijiang Huang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China; Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Xin Zhao
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China
| | - Muli Xu
- Kunming Medical University, Kunming, 650600, China
| | - Peijin Wang
- Kunming Medical University, Kunming, 650600, China
| | - Rong Li
- Kunming Medical University, Kunming, 650600, China
| | - Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Wei Tang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China.
| | - Jianlin Jiao
- Kunming Medical University, Kunming, 650600, China.
| |
Collapse
|
4
|
Lin F, Shen J, Li H, Liu L. β-carboline compound-10830733 suppresses the progression of non-small cell lung cancer by inhibiting the PI3K/Akt/GSK 3β signaling pathway. Eur J Pharmacol 2025; 986:177131. [PMID: 39566811 DOI: 10.1016/j.ejphar.2024.177131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Lung cancer is one of the most commonly diagnosed cancers worldwide, with non-small cell lung cancer (NSCLC) accounting for 80-85% of cases. To clarify the mechanisms underlying its onset and development, and to identify small molecule compounds that target related pathways effectively inhibiting tumor development and transformation. Small molecular compounds with a β-carboline nucleus exhibit a range of biological activities, with significant anti-tumor effects. A series of small molecule β-carboline compounds were synthesized and the dominant structure 1- (3-chlorophenyl) - 9H -pyridino - [3,4-b] indole - 3 -carboxylic acid methyl ester (10830733) was initially screened out. However, the effect of 10830733 on NSCLC is unclear. In this study, we investigated the anti-NSCLC activity of 10830733 and explored its potential mechanisms of action. First, we found that 10830733 decreased proliferation and invasion and promoted apoptosis, as well as S and G2 phase cell cycle arrest in NSCLC cells. Furthermore, network pharmacological analysis and Western blot confirmed that 10830733 inhibits the PI3K/Akt/GSK 3β pathway, and that the PI3K inhibitor LY294002 enhances the effects of 10830733 on proliferation, invasion, apoptosis, S and G2 phase arrest, and the expression of PI3K/Akt/GSK 3β related proteins. In conclusion, our data demonstrate that 10830733 reduces proliferation and invasion, promotes S and G2 phase arrest and apoptotic cell death in NSCLC cells by suppressing the PI3K/Akt/GSK 3β signaling pathway, suggesting that 10830733 could be a promising new candidate for NSCLC therapy.
Collapse
Affiliation(s)
- Fangrui Lin
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Junmin Shen
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Hangyu Li
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Li Liu
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China.
| |
Collapse
|
5
|
Li X, Tang X, Chen L, Cao X, Ailimujiang R, Li Q, Zhao F. Processed Products of Aconitum soongaricum Stapf. Inhibit the Growth of Ovarian Cancer Cells In vivo via Regulating the PI3K/AKT Signal Pathway. Anticancer Agents Med Chem 2025; 25:630-642. [PMID: 39844406 DOI: 10.2174/0118715206344374241219065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025]
Abstract
INTRODUCTION/OBJECTIVE The alkaloids of songorine, aconitine, and benzoylaconitine, as the processed products of Aconitum soongaricum Stapf., can significantly inhibit the migration and invasion of ovarian cancer cells in vitro. Herein, we studied the in vivo role and mechanism of these natural products in processed A. soongaricum Stapf. METHODS A xenograft tumor model was constructed. Tumor volumes and weights were calculated. HE staining assessed the histopathological changes of tumors. Inflammatory factors were detected using ELISA. Gene and protein expressions of E-cadherin, N-cadherin, PIK3CA, and AKT1 proteins were measured using RT-qPCR and immunohistochemistry. Protein expressions of E-cadherin, N-cadherin, PIK3CA, AKT1, p-PIK3CA, and p- AKT1 proteins were detected using western blot analysis. RESULTS Songorine, aconitine, and benzoylaconine significantly inhibited the growth of tumors as evidenced by decreased tumor volume and weight. The extent and scope of tumor cell necrosis were less in the songorine group compared to the vehicle group. Songorine, aconitine, and benzoylaconine significantly reduced IL-6, IL-1β, and TNF-α levels. Furthermore, songorine, aconitine, and benzoylecgonine induced down-regulation of N-cadherin and AKT1 mRNA in comparison to the vehicle group. Meanwhile, songorine, aconitine, and benzoylaconine also significantly reduced N-cadherin, p-PIK3CA, and p-AKT1 proteins, while upregulating E-cadherin protein expression in comparison to the vehicle group. These effects were further enhanced when combined with the PI3K inhibitor LY294002. CONCLUSION Songorine, aconitine, and benzoylaconine may inhibit ovarian cancer growth in vivo by blocking the PI3K/AKT signaling pathway. Our findings may provide evidence for the clinical application of the processed products of Aconitum soongaricum Stapf. in ovarian cancer treatment.
Collapse
MESH Headings
- Female
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Humans
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Aconitum/chemistry
- Animals
- Phosphatidylinositol 3-Kinases/metabolism
- Cell Proliferation/drug effects
- Signal Transduction/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Mice
- Drug Screening Assays, Antitumor
- Molecular Structure
- Dose-Response Relationship, Drug
- Structure-Activity Relationship
- Mice, Inbred BALB C
- Aconitine/pharmacology
- Aconitine/chemistry
- Aconitine/analogs & derivatives
- Tumor Cells, Cultured
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
Collapse
Affiliation(s)
- Xiaojuan Li
- Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830054, China
- Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xinle Tang
- Laboratory Department of the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China
| | - Liang Chen
- Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Traditional Chinese Medicine Processing Research, Urumqi, 830054, China
| | - Xingxing Cao
- Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830054, China
| | - Reziya Ailimujiang
- Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830054, China
| | - Qian Li
- Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Traditional Chinese Medicine Processing Research, Urumqi, 830054, China
| | - Feicui Zhao
- Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Traditional Chinese Medicine Processing Research, Urumqi, 830054, China
| |
Collapse
|
6
|
Zając A, Sumorek-Wiadro J, Maciejczyk A, Chojnacki M, Wertel I, Rzeski W, Jakubowicz-Gil J. The engagement of Ras/Raf/MEK/ERK and PLCγ1/PKC pathways regulated by TrkB receptor in resistance of glioma cells to elimination upon apoptosis induction. Neuropharmacology 2025; 262:110204. [PMID: 39521041 DOI: 10.1016/j.neuropharm.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The most aggressive tumors of human central nervous system are anaplastic astrocytoma (AA, III grade) and glioblastoma multiforme (GBM, IV grade) with an extremely bad prognosis. Their malignant character and resistance to standard therapy are correlated to the over-expression of survival pathways such as Ras/Raf/MEK/ERK and PLCγ1/PKC regulated by TrkB receptor. Therefore, the aim of this study was to investigate the engagement of those pathways in human glioma cells resistance for apoptosis induction by Temozolomide treatment. Two cancer MOGGCCM (AA) and T98G (GBM) and normal human astrocytes (NHA) cell lines were utilized. The tested inhibitors single and simultaneous action with Temozolomide affection on apoptosis induction was analyzed by MTT, microscopic observations and flow cytometry. Bcl-2:beclin-1 complexes occurrence was also assessed. siRNAs were used for direct proof of tested pathways engagement in gliomas resistance to apoptosis elimination. The most effective in eliminating gliomas with minimal astrocyte damage was 5 μM PLCγ1 inhibitor (U-73122) for MOGGCCM and 15 μM for T98G cells, and 1 μM LOXO-101 for all cancer cells. Sorafenib, Temozolomide, U-73122, and LOXO-101 effectively eliminate cancer cells. Single applications of sorafenib and Temozolomide were effective, but had lower efficiency than U-73122 and LOXO-101. These drugs induced apoptosis, affecting mitochondrial membrane potential and caspases 3, 8, and 9 activity. The study found that a Bcl-2:beclin-1 complex formation was observed when apoptosis was dominant. Inhibiting the pathways regulated by TrkB receptor combined with Temozolomide action, led to successful gliomas elimination. Those results might serve as basis for modern targeted treatment development.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Aleksandra Maciejczyk
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
7
|
Pankowska E, Kończak O, Żakowicz P, Wojciechowicz T, Gogulski M, Radko L. Protective Action of Cannabidiol on Tiamulin Toxicity in Humans-In Vitro Study. Int J Mol Sci 2024; 25:13542. [PMID: 39769305 PMCID: PMC11676896 DOI: 10.3390/ijms252413542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The growing awareness and need to protect public health, including food safety, require a thorough study of the mechanism of action of veterinary drugs in consumers to reduce their negative impact on humans. Inappropriate use of veterinary drugs in animal husbandry, such as tiamulin, leads to the appearance of residues in edible animal tissues. The use of natural substances of plant origin, extracted from hemp (Cannabis sativa L.), such as cannabidiol (CBD), is one of the solutions to minimize the negative effects of tiamulin. This study aimed to determine the effect of CBD on the cytotoxicity of tiamulin in humans. The cytotoxic activity of tiamulin and the effect of its mixtures with CBD were tested after 72 h exposure to three human cell lines: SH-SY5Y, HepG2 and HEK-293. Cytotoxic concentrations (IC50) of the tested drug and in combination with CBD were assessed using five biochemical endpoints: mitochondrial and lysosomal activity, proliferation, cell membrane integrity and effects on DNA synthesis. Oxidative stress, cell death and cellular morphology were also assessed. The nature of the interaction between the veterinary drug and CBD was assessed using the combination index. The long-term effect of tiamulin inhibited lysosomal (SH-SY5SY) and mitochondrial (HepG2) activity and DNA synthesis (HEK-293). IC50 values for tiamulin ranged from 2.1 to >200 µg/mL (SH-SY5SY), 13.9 to 39.5 µg/mL (HepG2) and 8.5 to 76.9 µg/mL (HEK-293). IC50 values for the drug/CBD mixtures were higher. Reduced levels of oxidative stress, apoptosis and changes in cell morphology were demonstrated after exposure to the mixtures. Interactions between the veterinary drug and CBD showed a concentration-dependent nature of tiamulin in cell culture, ranging from antagonistic (low concentrations) to synergistic effects at high drug concentrations. The increased risk to human health associated with the presence of the veterinary drug in food products and the protective nature of CBD use underline the importance of these studies in food toxicology and require further investigation.
Collapse
Affiliation(s)
- Eryka Pankowska
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Oliwia Kończak
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Paula Żakowicz
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| |
Collapse
|
8
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
9
|
Sumorek-Wiadro J, Zając A, Skalicka-Woźniak K, Rzeski W, Jakubowicz-Gil J. Furanocoumarins as Enhancers of Antitumor Potential of Sorafenib and LY294002 toward Human Glioma Cells In Vitro. Int J Mol Sci 2024; 25:759. [PMID: 38255833 PMCID: PMC10815922 DOI: 10.3390/ijms25020759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Furanocoumarins are naturally occurring compounds in the plant world, characterized by low molecular weight, simple chemical structure, and high solubility in most organic solvents. Additionally, they have a broad spectrum of activity, and their properties depend on the location and type of attached substituents. Therefore, the aim of our study was to investigate the anticancer activity of furanocoumarins (imperatorin, isoimperatorin, bergapten, and xanthotoxin) in relation to human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cell lines. The tested compounds were used for the first time in combination with LY294002 (PI3K inhibitor) and sorafenib (Raf inhibitor). Apoptosis, autophagy, and necrosis were identified microscopically after straining with Hoechst 33342, acridine orange, and propidium iodide, respectively. The levels of caspase 3 and Beclin 1 were estimated by immunoblotting and for the blocking of Raf and PI3K kinases, the transfection with specific siRNA was used. The scratch test was used to assess the migration potential of glioma cells. Our studies showed that the anticancer activity of furanocoumarins strictly depended on the presence, type, and location of substituents. The obtained results suggest that achieving higher pro-apoptotic activity is determined by the presence of an isoprenyl moiety at the C8 position of the coumarin skeleton. In both anaplastic astrocytoma and glioblastoma, imperatorin was the most effective in induction apoptosis. Furthermore, the usage of imperatorin, alone and in combination with sorafenib or LY294002, decreased the migratory potential of MOGGCCM and T98G cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| |
Collapse
|
10
|
Zhao TL, Qi Y, Wang YF, Wang Y, Liang H, Pu YB. 5-methoxytryptophan induced apoptosis and PI3K/Akt/FoxO3a phosphorylation in colorectal cancer. World J Gastroenterol 2023; 29:6148-6160. [PMID: 38186686 PMCID: PMC10768408 DOI: 10.3748/wjg.v29.i47.6148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent malignancy worldwide, and new therapeutic targets urgently need to be found to prolong patient survival. 5-methoxytryptophan (5-MTP) is a tryptophan metabolite found in animals and humans. However, the effects of 5-MTP on proliferation and apoptosis of CRC cells are currently unknown. AIM To investigate the effects of 5-MTP on the proliferation, migration, invasion, and apoptosis abilities of CRC cells. Additionally, we seek to explore whether 5-MTP has the potential to be utilized as a drug for the treatment of CRC. METHODS In order to evaluate the effect of 5-MTP on CRC cells, a series of experiments were conducted for evaluation. Colony formation assay and Cell Counting Kit 8 assays were used to investigate the impact of 5-MTP on the proliferation of CRC cell lines. Cell cycle assays were employed to examine the effect of 5-MTP on cellular growth. In addition, we investigated the effects of 5-MTP on apoptosis and reactive oxygen species in HCT-116 cells. To obtain a deeper understanding of how 5-MTP affects CRC, we conducted a study to examine its influence on the PI3K/Akt signaling pathway in CRC cells. RESULTS This article showed that 5-MTP promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells. In many articles, it has been reported that PI3K/Akt/FoxO3a signaling pathway is one of the most important signaling pathways involved in internal regulating cell proliferation and differentiation. Nevertheless, 5-MTP combined with PI3K/Akt/FoxO3a signaling pathway inhibitors significantly promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells compared with 5-MTP alone in our study. CONCLUSION Therefore, there is strong evidence that 5-MTP can be used as an effective medicine for CRC treatment.
Collapse
Affiliation(s)
- Tian-Lei Zhao
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yue Qi
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi-Fan Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Hui Liang
- Department of Gastroenterology, Naval Medical Center of PLA, Shanghai 200052, China
| | - Ya-Bin Pu
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| |
Collapse
|
11
|
Zając A, Maciejczyk A, Sumorek-Wiadro J, Filipek K, Deryło K, Langner E, Pawelec J, Wasiak M, Ścibiorski M, Rzeski W, Tchórzewski M, Reichert M, Jakubowicz-Gil J. The Role of Bcl-2 and Beclin-1 Complex in "Switching" between Apoptosis and Autophagy in Human Glioma Cells upon LY294002 and Sorafenib Treatment. Cells 2023; 12:2670. [PMID: 38067099 PMCID: PMC10705223 DOI: 10.3390/cells12232670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Kamil Deryło
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Jarosław Pawelec
- Institute Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Magdalena Wasiak
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Puławy, Poland; (M.W.); (M.R.)
| | - Mateusz Ścibiorski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Michał Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Puławy, Poland; (M.W.); (M.R.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| |
Collapse
|
12
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B. Evaluation of the Biological Effect of Non-UV-Activated Bergapten on Selected Human Tumor Cells and the Insight into the Molecular Mechanism of Its Action. Int J Mol Sci 2023; 24:15555. [PMID: 37958539 PMCID: PMC10647757 DOI: 10.3390/ijms242115555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
There is some evidence that non-photoactivated psoralens may be active against breast and colon tumor cells. Therefore, we evaluated the antiproliferative, proapoptotic, and anti-migrative effect of 5-methoxypsoralen (5-MOP) isolated from Peucedanum tauricum MB fruits in human colorectal adenocarcinoma (HT-29 and SW620), osteosarcoma (Saos-2 and HOS), and multiple myeloma (RPMI8226 and U266). Dose- and cell-line-dependent effects of 5-MOP on viability and proliferation were observed, with the strongest inhibitory effect against Saos-2 and a moderate effect against the HOS, HT-29, and SW620 cells. Multiple myeloma showed low sensitivity. The high viability of human normal cell cultures (HSF and hFOB) in a wide range of 5-MOP concentrations tested (6.25-100 µM) was confirmed. Moreover, the migration of treated Saos-2, SW620, and HT-29 cell lines was impaired, as indicated via a wound healing assay. Flow cytometry analysis conducted on Saos-2 cells revealed the ability of 5-MOP to block the cell cycle in the G2 phase and trigger apoptosis, which was accompanied by a loss of mitochondrial membrane potential, caspases (-9 and -3) activation, the altered expression of the Bax and Bcl-2 proteins, and decreased AKT phosphorylation. This is the first report evaluating the antiproliferative and antimigratory impact of non-UV-activated bergapten on the abovementioned (except for HT-29) tumor cells, which provides new data on the potential role of 5-MOP in inhibiting the growth of various types of therapeutic-resistant cancers.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
13
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
14
|
Jiang Y, Pan Q, Zhu X, Liu J, Liu Z, Deng Y, Liu W, Liu Y. Knockdown of CCR3 gene inhibits Proliferation, migration and degranulation of eosinophils in mice by downregulating the PI3K/Akt pathway. Int Immunopharmacol 2022; 113:109439. [DOI: 10.1016/j.intimp.2022.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
|