1
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
2
|
de Alvarenga AMSB, Borges ME, Jorge LR, Varassin IG, Araújo SBL. Consumers' active choice behaviour promotes coevolutionary units in antagonistic networks. J Evol Biol 2021; 35:134-145. [PMID: 34758181 DOI: 10.1111/jeb.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Individual behaviour and local context can influence the evolution of ecological interactions and how they structure into networks. In trophic interactions, consumers can increase their fitness by actively choosing resources that they are more likely to explore successfully. Mathematical modelling is often employed in theoretical studies to understand the coevolutionary dynamics between consumers and resources. However, they often disregard the individual consumer behaviour since the complexity of these systems usually requires simplifying assumptions about interaction details. Using an individual-based model, we model a community of several species that interact antagonistically. Each individual has a trait (attack or defence) that is explicitly modelled and the probability of the interaction to occur successfully increases with increased trait-matching. In addition, consumers can actively choose resources that guarantee greater fitness. We show that active consumer choice can generate coevolutionary units over time. It means that the traits of both consumers and resources converge into multiple groups with similar traits and the species interactions stay restricted to these groups over time. We also observed that network structure is more dependent on the parameter that delimits active consumer choice than on the intensity of selective pressure. Thus, our results support the idea that consumer active choice behaviour plays an important role in the ecological and evolutionary processes that structure interacting communities.
Collapse
Affiliation(s)
| | | | - Leonardo Ré Jorge
- Department of Ecology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Isabela Galarda Varassin
- Laboratório de Interações e Biologia Reprodutiva, Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sabrina Borges Lino Araújo
- Laboratório de Interações Biológicas, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Coevolutionary patterns caused by prey selection. J Theor Biol 2020; 501:110327. [PMID: 32422140 DOI: 10.1016/j.jtbi.2020.110327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022]
Abstract
Many theoretical models have been formulated to better understand the coevolutionary patterns that emerge from antagonistic interactions. These models usually assume that the attacks by the exploiters are random, so the effect of victim selection by exploiters on coevolutionary patterns remains unexplored. Here we analytically studied the payoff for predators and prey under coevolution assuming that every individual predator can attack only a small number of prey any given time, considering two scenarios: (i) predation occurs at random; (ii) predators select prey according to phenotype matching. We also develop an individual based model to verify the robustness of our analytical prediction. We show that both scenarios result in well known similar coevolutionary patterns if population sizes are sufficiently high: symmetrical coevolutionary branching and symmetrical coevolutionary cycling (Red Queen dynamics). However, for small population sizes, prey selection can cause unexpected coevolutionary patterns. One is the breaking of symmetry of the coevolutionary pattern, where the phenotypes evolve towards one of two evolutionarily stable patterns. As population size increases, the phenotypes oscillate between these two values in a novel form of Red Queen dynamics, the episodic reversal between the two stable patterns. Thus, prey selection causes prey phenotypes to evolve towards more extreme values, which reduces the fitness of both predators and prey, increasing the likelihood of extinction.
Collapse
|
4
|
Spotless starlings prefer spotless eggs: conspecific brood parasites cue on eggshell spottiness to avoid ectoparasites. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Not too big, not too small: raids at moderately sized hosts lead to optimal outcomes for a slave-making ant. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2797-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Soler M, Pérez-Contreras T, Soler JJ. Great spotted cuckoos show dynamic patterns of host selection during the breeding season. The importance of laying stage and parasitism status of magpie nests. Behav Ecol 2019. [DOI: 10.1093/beheco/arz208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Avian brood parasites depend entirely on their hosts to raise their nestlings until independence. Thus, parasite females should select suitable host nests for egg laying according to traits that enhance offspring survival. The availability of nests of certain characteristics influencing the survival of parasitic offspring is, however, temporally dynamic and, thus, patterns of host selection should be evaluated considering characteristics of available host nests the day of parasitism. This allows detecting possible seasonal changes and, therefore, a more realistic picture of host selection by brood parasites. In this paper, we adopt such a new approach and consider daily availability of magpie (Pica pica) host nests at different breeding stage that were or were not parasitized by the great spotted cuckoo (Clamator glandarius). Theory predicts that cuckoos should select host nests at the laying stage. Accordingly, we detected that cuckoos preferred to parasitize magpie nests at the laying stage but, mainly, those that already harbored one or two cuckoo eggs, which may seem counterintuitive. We also showed that patterns of host selection by cuckoos varied during the breeding season, which implies that brood parasite–host interaction is dynamic depending on phenology. These patterns are hidden when not considering the temporally dynamic nature of the availability of host nests of characteristics of interest. We discuss the importance of such patterns and considering diary hosts nests availability for detecting them.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan José Soler
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| |
Collapse
|
7
|
Migration behavior and performance of the great spotted cuckoo (Clamator glandarius). PLoS One 2019; 14:e0208436. [PMID: 30608941 PMCID: PMC6319774 DOI: 10.1371/journal.pone.0208436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
The study of brood parasitism has traditionally been focused on the breeding period, but recent evidence suggests that it urgently needs a new spatio-temporal perspective to explore novel avenues on brood parasite-host co-evolutionary interactions. Many brood parasites are migrants, but their ecology outside their short breeding season is poorly known. The great spotted cuckoo (Clamator glandarius) is one of the classical models in the study of brood parasitism, however, there is very little information on its migratory strategy, route and wintering grounds. Furthermore, there is no previous information on the geographical distribution of mortality and its causes in this species; information that is critical to understand the fluctuations in cuckoo populations and detect potential conservation risks. Using satellite tracking technology, we provide novel insight into the migratory behavior and performance of the great spotted cuckoo. We found individuals from southern Spain to be long-distance nocturnal migrants that use the East Atlantic Flyway for both post and pre-breeding migration, and that winter in the western Sahel. We found evidence of individual variation in their migration route, particularly regarding their post-breeding behavior in Spain. Our study also suggests that the south of Morocco is the most dangerous area due to a large number of deaths during the post-breeding migratory period. Furthermore, we found that natural predation seems to be the main cause of death, probably due to raptors, although human activities (i.e. hunting) could also played a role in the southern Mediterranean shore. Our study offers novel findings and challenges traditional ideas on the ecology of this species providing a good example of how the new spatio-temporal perspective can expand our knowledge on brood parasites.
Collapse
|
8
|
|
9
|
Soler M, de Neve L, Roldán M, Pérez-Contreras T, Soler JJ. Great spotted cuckoo nestlings have no antipredatory effect on magpie or carrion crow host nests in southern Spain. PLoS One 2017; 12:e0173080. [PMID: 28422953 PMCID: PMC5396876 DOI: 10.1371/journal.pone.0173080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 02/12/2017] [Indexed: 11/18/2022] Open
Abstract
Host defences against cuckoo parasitism and cuckoo trickeries to overcome them are a classic example of antagonistic coevolution. Recently it has been reported that this relationship may turn to be mutualistic in the case of the carrion crow (Corvus corone) and its brood parasite, the great spotted cuckoo (Clamator glandarius), given that experimentally and naturally parasitized nests were depredated at a lower rate than non-parasitized nests. This result was interpreted as a consequence of the antipredatory properties of a fetid cloacal secretion produced by cuckoo nestlings, which presumably deters predators from parasitized host nests. This potential defensive mechanism would therefore explain the detected higher fledgling success of parasitized nests during breeding seasons with high predation risk. Here, in a different study population, we explored the expected benefits in terms of reduced nest predation in naturally and experimentally parasitized nests of two different host species, carrion crows and magpies (Pica pica). During the incubation phase non-parasitized nests were depredated more frequently than parasitized nests. However, during the nestling phase, parasitized nests were not depredated at a lower rate than non-parasitized nests, neither in magpie nor in carrion crow nests, and experimental translocation of great spotted cuckoo hatchlings did not reveal causal effects between parasitism state and predation rate of host nests. Therefore, our results do not fit expectations and, thus, do not support the fascinating possibility that great spotted cuckoo nestlings could have an antipredatory effect for host nestlings, at least in our study area. We also discuss different possibilities that may conciliate these with previous results, but also several alternative explanations, including the lack of generalizability of the previously documented mutualistic association.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| | - Liesbeth de Neve
- Dep. Biology, Terrestrial Ecology Unit, Ghent University, Gent, Belgium
| | - María Roldán
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| |
Collapse
|
10
|
Šulc M, Procházka P, Capek M, Honza M. Common cuckoo females are not choosy when removing an egg during parasitism. Behav Ecol 2016. [DOI: 10.1093/beheco/arw085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Affiliation(s)
- David C. Lahti
- Department of Biology; Queens College; City University of New York; New York; NY; USA
| |
Collapse
|
12
|
|