1
|
Ma Q, Pang M, Huang Z, Mu R, Pang Y. Derivation and application of a parameter for denitrification rates in the Taihu Lake model based on an isotope-labeled denitrification experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15559-15570. [PMID: 38296932 DOI: 10.1007/s11356-024-32227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
In recent years, the total nitrogen concentration in Taihu Lake has decreased significantly. Denitrification, as the main nitrogen removal process, is the key reason for the decrease. Here, the denitrification parameter values in the Environmental Fluid Dynamic Code (EFDC) model were calculated based on isotope-labeled denitrification experiment instead of selecting the recommended values directly. This study further focused on EFDC denitrification parameter derivation with an experimental denitrification rate (Dtot) to reduce simulation errors. According to the EFDC nitrate deposition flux mechanism, the conversion equation between the denitrification rate of the first sediment layer ([Formula: see text]) in EFDC and Dtot was successfully derived. The results revealed a linear correlation between [Formula: see text] and (Dtot)1/2. The [Formula: see text] values of sampling points ranged from 0.25 to 0.27 m·day-1, within the range of model parameters. After substituting [Formula: see text] into the Taihu Lake EFDC model, the average percentage bias and determination coefficient of total nitrogen were 16.25% and 0.87, respectively. The average total nitrogen concentration reduction caused by denitrification at water quality calibration points ranged from 0.027 to 0.305 mg·L-1.
Collapse
Affiliation(s)
- Qiuxia Ma
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Pang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Zhilin Huang
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, 510610, China
| | - Ronghua Mu
- East China Inspection Bureau, Ministry of Ecology and Environment, Nanjing, 210019, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Zhang Z, Furman A. Soil redox dynamics under dynamic hydrologic regimes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143026. [PMID: 33143917 DOI: 10.1016/j.scitotenv.2020.143026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Electron transfer (redox) reactions, mediated by soil microbiota, modulate elemental cycling and, in part, establish the redox poise of soil systems. Understanding soil redox processes significantly improves our ability to characterize coupled biogeochemical cycling in soils and aids in soil health management. Redox-sensitive species exhibit different reactivity, mobility, and toxicity subjected to their redox state. Thus, it is crucial to quantify the redox potential (Eh) in soils and to characterize the dominant redox couples therein. Several, often coupled, external drivers, can influence Eh. Among these factors, soil hydrology dominates. It controls soil physical properties that in turn further regulates Eh. Soil spatial heterogeneity and temporally dynamic hydrologic regimes yield complex distributions of Eh. Soil redox processes have been studied under various environmental conditions, including relatively static and dynamic hydrologic regimes. Our focus here is on dynamic, variably water-saturated environments. Herein, we review previous studies on soil redox dynamics, with a specific focus on dynamic hydrologic regimes, provide recommendations on knowledge gaps, and targeted future research needs and directions. We review (1) the role of soil redox conditions on the soil chemical-species cycling of organic carbon, nitrogen, phosphorus, redox-active metals, and organic contaminants; (2) interactions between microbial activity and redox state in the near-surface and deep subsurface soil, and biomolecular methods to reveal the role of microbes in the redox processes; (3) the effects of dynamic hydrologic regimes on chemical-species cycling and microbial dynamics; (4) the experimental setups for mimicking different hydrologic regimes at both laboratory and field scales. Finally, we identify the current knowledge gaps related to the study of soil redox dynamics under different hydrologic regimes: (1) fluctuating conditions in the deep subsurface; (2) the use of biomolecular tools to understand soil biogeochemical processes beyond nitrogen; (3) limited current field measurements and potential alternative experimental setups.
Collapse
Affiliation(s)
- Zengyu Zhang
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Furman
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
4
|
Huang W, Hammel KE, Hao J, Thompson A, Timokhin VI, Hall SJ. Enrichment of Lignin-Derived Carbon in Mineral-Associated Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7522-7531. [PMID: 31177774 DOI: 10.1021/acs.est.9b01834] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A modern paradigm of soil organic matter proposes that persistent carbon (C) derives primarily from microbial residues interacting with minerals, challenging older ideas that lignin moieties contribute to soil C because of inherent recalcitrance. We proposed that aspects of these old and new paradigms can be partially reconciled by considering interactions between lignin decomposition products and redox-sensitive iron (Fe) minerals. An Fe-rich tropical soil (with C4 litter and either 13C-labeled or unlabeled lignin) was pretreated with different durations of anaerobiosis (0-12 days) and incubated aerobically for 317 days. Only 5.7 ± 0.2% of lignin 13C was mineralized to CO2 versus 51.2 ± 0.4% of litter C. More added lignin-derived C (48.2 ± 0.9%) than bulk litter-derived C (30.6 ± 0.7%) was retained in mineral-associated organic matter (MAOM; density >1.8 g cm-3), and 12.2 ± 0.3% of lignin-derived C vs 6.4 ± 0.1% of litter C accrued in clay-sized (<2 μm) MAOM. Longer anaerobic pretreatments increased added lignin-derived C associated with Fe, according to extractions and nanoscale secondary ion mass spectrometry (NanoSIMS). Microbial residues are important, but lignin-derived C may also contribute disproportionately to MAOM relative to bulk litter-derived C, especially following redox-sensitive biogeochemical interactions.
Collapse
Affiliation(s)
- Wenjuan Huang
- Department of Ecology, Evolution, and Organismal Biology , Iowa State University , Ames , Iowa 50011 , United States
- Key laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Kenneth E Hammel
- US Forest Products Laboratory , Madison , Wisconsin 53726 , United States
- Department of Bacteriology , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Aaron Thompson
- Department of Crop and Soil Sciences , The University of Georgia , Athens , Georgia 30602 , United States
| | - Vitaliy I Timokhin
- University of Wisconsin , Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center , Madison , Wisconsin 53706 , United States
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
5
|
Modest Gaseous Nitrogen Losses Point to Conservative Nitrogen Cycling in a Lowland Tropical Forest Watershed. Ecosystems 2017. [DOI: 10.1007/s10021-017-0193-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Interactive Effects of Vegetation Type and Topographic Position on Nitrogen Availability and Loss in a Temperate Montane Ecosystem. Ecosystems 2016. [DOI: 10.1007/s10021-016-0094-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|