1
|
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Toju H. Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia 2021; 195:773-784. [PMID: 33598833 DOI: 10.1007/s00442-021-04868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
Ectomycorrhizal (EcM) tree species often become more dominant than arbuscular mycorrhizal (AM) tree species in temperate forests, but they generally coexist. Theory predicts that ecological feedback mediated by aboveground herbivory and/or belowground microbes could explain these dominance/coexistence patterns. An experimental test of how aboveground/belowground organisms associated with AM/EcM trees mediate ecological feedbacks has been lacking at the community-level. By establishing AM and EcM tree sapling assemblages in mesocosms and then introducing seedlings of each type in a reciprocal planting experiment, we compared seedling performance under varying sapling species (conspecifics, heterospecifics within the same and different mycorrhizal types), using traits that reflect either aboveground herbivory-mediated feedback or belowground fungal-mediated feedback or both. When examining seedling traits that reflect aboveground herbivory-mediated feedbacks (i.e., foliar damage), AM plants tended to experience less foliar damage and EcM plants more damage under conspecific versus heterospecific saplings within the same mycorrhizal types, and aboveground herbivory-mediated feedback was species-specific rather than mycorrhizal type-specific. Conversely, when examining traits that reflect belowground fungal-mediated feedbacks, both AM and EcM plant species often exhibited mycorrhizal type-specific feedbacks (e.g., greater aboveground biomass under the same versus different mycorrhizal-type saplings) rather than species-specific feedbacks. Furthermore, tree species affected by herbivory-mediated feedback were less affected by belowground feedback, indicating that the relative importance of the feedbacks varied among plant species. Analysis of plant-associated organisms verified that the feedback outcomes corresponded with species accumulation of belowground fungi (but not of aboveground herbivores). Thus, aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate temperate tree diversity.
Collapse
Affiliation(s)
- Kohmei Kadowaki
- Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan. .,The Hakubi Center for Advanced Research, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Yoshida-nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Hirano 2 509-3, Otsu, 520-2113, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
2
|
Werger L, Bergmann J, Weber E, Heinze J. Wind intensity affects fine root morphological traits with consequences for plant-soil feedback effects. AOB PLANTS 2020; 12:plaa050. [PMID: 33133480 PMCID: PMC7583724 DOI: 10.1093/aobpla/plaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Wind influences the development, architecture and morphology of plant roots and may modify subsequent interactions between plants and soil (plant-soil feedbacks-PSFs). However, information on wind effects on fine root morphology is scarce and the extent to which wind changes plant-soil interactions remains unclear. Therefore, we investigated the effects of two wind intensity levels by manipulating surrounding vegetation height in a grassland PSF field experiment. We grew four common plant species (two grasses and two non-leguminous forbs) with soil biota either previously conditioned by these or other species and tested the effect of wind on root:shoot ratio, fine root morphological traits as well as the outcome for PSFs. Wind intensity did not affect biomass allocation (i.e. root:shoot ratio) in any species. However, fine-root morphology of all species changed under high wind intensity. High wind intensity increased specific root length and surface area and decreased root tissue density, especially in the two grasses. Similarly, the direction of PSFs changed under high wind intensity in all four species, but differences in biomass production on the different soils between high and low wind intensity were marginal and most pronounced when comparing grasses with forbs. Because soils did not differ in plant-available nor total nutrient content, the results suggest that wind-induced changes in root morphology have the potential to influence plant-soil interactions. Linking wind-induced changes in fine-root morphology to effects on PSF improves our understanding of plant-soil interactions under changing environmental conditions.
Collapse
Affiliation(s)
- Luise Werger
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Joana Bergmann
- Institute of Biology, Dahlem Center of Plant Science (DCPS), Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ewald Weber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Johannes Heinze
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
3
|
Heinze J, Bezemer TM, Joshi J. Editorial: The Next Step: Disentangling the Role of Plant-Soil Feedbacks in Plant Performance and Species Coexistence Under Natural Conditions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Heinze J, Wacker A, Kulmatiski A. Plant-soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology 2020; 101:e03023. [PMID: 32083736 DOI: 10.1002/ecy.3023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 01/03/2023]
Abstract
Relatively little is known about how plant-soil feedbacks (PSFs) may affect plant growth in field conditions where factors such as herbivory may be important. Using a potted experiment in a grassland, we measured PSFs with and without aboveground insect herbivory for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more negative with herbivory than without. This occurred because plant biomass on "home" soils was smaller with herbivory than without. PSF values with herbivory were correlated with plant landscape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentrations suggested that plants create soils that increase nitrogen uptake, but that greater shoot nitrogen values increase herbivory and that the net effect of positive PSF and greater aboveground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone have limited power in explaining species abundances and that herbivory has stronger effects on plant biomass and growth on the landscape. Our results provide a potential explanation for observed differences between greenhouse and field PSF experiments and suggest that PSF experiments need to consider important biotic interactions, like aboveground herbivory, particularly when the goal of PSF research is to understand plant growth in field conditions.
Collapse
Affiliation(s)
- Johannes Heinze
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, D-14469, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstrasse 6, 14195, Berlin, Germany
| | - Alexander Wacker
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| | - Andrew Kulmatiski
- Department of Wildland Resources and the Ecology Center, Utah State University, 84322-5230, Logan, Utah, USA
| |
Collapse
|
5
|
Dietterich LH, Li A, Garvey SM, Casper BB. Aboveground Competition and Herbivory Overpower Plant-Soil Feedback Contributions to Succession in a Remediated Grassland. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Kirchhoff L, Kirschbaum A, Joshi J, Bossdorf O, Scheepens JF, Heinze J. Plant-Soil Feedbacks of Plantago lanceolata in the Field Depend on Plant Origin and Herbivory. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|