1
|
Labastida-Estrada E, González-Cortés L, Karam-Martínez SG, Montoya-Márquez JA, Zúñiga-Marroquín T, Becerril-Morales F, Islas-Villanueva V. Influence of incubation temperature, maternal effects, and paternity on quality of olive ridley hatchlings (Lepidochelys olivacea) from a mass-nesting beach in the Mexican Pacific. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:563-577. [PMID: 38470019 DOI: 10.1002/jez.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Future climate change scenarios project that the increase in surface temperatures will affect ocean temperatures, inducing shifts in marine biodiversity. Sea turtles are species that are particularly vulnerable to the effects of climate change because temperature is a factor that influences embryonic development. We collected clutches of olive ridley turtles from a mass-nesting beach in the Mexican Pacific, which were incubated in ex situ conditions. When the hatchlings emerged, we measured the body condition index-which evaluates the weight-length relationship-and swim thrust, both were considered traits associated with fitness, termed "fitness proxies," and evaluated the effects of incubation temperature, maternal effects, and paternity on these fitness proxies. The body condition index was correlated positively and significantly with the arribada month and temperature during the last third of the incubation period but showed an inverse relationship with the maternal effect. While swim thrust was positively correlated with the maternal effect and the arribada month, there was an inverse relationship with incubation temperature during the first third of the period. Paternity, whether single or multiple, did not have a significant effect on either fitness proxies; however, it may have effects on the average fitness of a population of hatchlings. These results underscore the need to expand research on the sublethal effects of high incubation temperatures on the adaptation and survival of sea turtles, particularly in scenarios of rapid climate change.
Collapse
Affiliation(s)
- Elizabeth Labastida-Estrada
- División de Estudios de Posgrado, Programa de Maestría en Ciencias: Ecología Marina, Universidad del Mar campus Puerto Ángel. Ciudad Universitaria, San Pedro Pochutla, Oaxaca, México
| | - Liliana González-Cortés
- División de Estudios de Posgrado, Programa de Maestría en Ciencias: Ecología Marina, Universidad del Mar campus Puerto Ángel. Ciudad Universitaria, San Pedro Pochutla, Oaxaca, México
| | - Samantha G Karam-Martínez
- Instituto de Recursos, Universidad del Mar campus Puerto Ángel. Ciudad Universitaria, San Pedro Pochutla, Oaxaca, México
| | - José Alberto Montoya-Márquez
- Instituto de Recursos, Universidad del Mar campus Puerto Ángel. Ciudad Universitaria, San Pedro Pochutla, Oaxaca, México
| | - Tania Zúñiga-Marroquín
- Instituto de Agroingeniería, Universidad del Papaloapan campus Loma Bonita, Avenida Ferrocarril, Ciudad Universitaria, Loma Bonita, Oaxaca, México
| | - Felipe Becerril-Morales
- Instituto de Agroingeniería, Universidad del Papaloapan campus Loma Bonita, Avenida Ferrocarril, Ciudad Universitaria, Loma Bonita, Oaxaca, México
| | - Valentina Islas-Villanueva
- Instituto de Genética, CONAHCYT-Universidad del Mar campus Puerto Ángel. Ciudad Universitaria, San Pedro Pochutla, Oaxaca, México
| |
Collapse
|
2
|
Robledo-Avila LA, Phillips-Farfán BV, García-Bucio IY, Montes-Sánchez S, Herrera-Vargas MA, Contreras-Garduño J, Núñez-Anita RE, Martínez-Lendech N, Meléndez-Herrera E. Incubation in shaded hatcheries biases sex-determination but preserves Lepidochelys olivacea hatchling physiology. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106244. [PMID: 37924794 DOI: 10.1016/j.marenvres.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Some studies have associated ex situ conservation with cerebral and gonadal developmental delay, as well as decreased motor performance in Lepidochelys olivacea offspring. Ex situ management is also related to a more mature spleen and a differential leukocyte count in newly emerged Lepidochelys olivacea hatchlings. The physiological relevance of a more mature spleen is unknown in sea turtles, but studies in birds suggest an increased immune response. Because egg relocation to hatcheries is a common conservation practice, it is imperative to know its impact on hatchling physiology. Herein, plasma activity of superoxide dismutase, alkaline phosphatase and the alternative complement pathway, as well as total antioxidant capacity and hydrogen peroxide concentrations were quantified in hatchlings from in situ and ex situ nests under basal conditions at nest emergence. Toll-like receptor 4 (tlr4), heat shock proteins (hsp) 70 and hsp90 expression were quantified in the spleen and liver of the hatchlings. Hepatocyte density and nuclear area were quantified in histological sections of the liver and all turtles were sexed by histological sectioning of the gonads. Total antioxidant capacity and hydrogen peroxide concentrations in plasma were lower in turtles from ex situ nests, while tlr4 and hsp70 mRNA expression was higher in the spleen but not in the liver. Ex situ incubation produced 98% male hatchlings, whereas in situ incubation produced 100% females. There were no other differences in the attributes sampled between hatchlings emerging from ex situ and in situ treatments. The results suggest that ex situ relocated turtles may be less prone to oxidative stress than in situ incubated hatchlings and could have more mature splenic function. Together, the data suggest that ex situ relocation to shaded hatcheries biased sex determination but preserved the general physiological condition of sea turtle hatchlings.
Collapse
Affiliation(s)
- Liliana Areli Robledo-Avila
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Bryan Víctor Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Cd. de México, Mexico.
| | - Irma Yunuen García-Bucio
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Shannen Montes-Sánchez
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Ma Antonia Herrera-Vargas
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, 58130, Morelia, Michoacán, Mexico.
| | - Norma Martínez-Lendech
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| |
Collapse
|
3
|
Maneja RH, Miller JD, Flint JB, Alcaria JFA, Basali AU, Flandez AVB, Gopalan J, Duraisamy T, Abrogueña JBR, Bawazier AA, Das PB, Manokaran S, Asiri YY, Qasem A, Asfahani K, Qurban MAB. Extreme conditions reduce hatching success of green turtles (Chelonia mydas L.) at Karan Island, the major nesting site in the Arabian Gulf. MARINE POLLUTION BULLETIN 2023; 190:114801. [PMID: 36965265 DOI: 10.1016/j.marpolbul.2023.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Survival in the early life stages is a major factor determining the growth and stability of wildlife populations. For sea turtles, nest location must provide favorable conditions to support embryonic development. Hatching success and incubation environment of green turtle eggs were examined in July 2019 at Karan Island, a major nesting site for the species in the Arabian Gulf. Mean hatching success averaged at 38.8 % (range = 2.5-75.0 %, n = 14). Eggs that suffered early embryonic death (EED) and late embryonic death (LED) represented 19.8 % (range: 3.3-64.2 %) and 41.4 % (range: 4.8-92.6 %) of the clutch on average, respectively. Nest sand was either coarse (0.5-1 mm: mean 44.8 %, range = 30.4-56.9 % by dry weight, n = 14) or medium (0.25-0.5 mm: mean 33.6 %, range = 12.0-45.5 % by dry weight, n = 14). Mean sand moisture (4.0 %, range = 3.2-4.9 %, n = 14) was at the lower margin for successful development. Hatching success was significantly higher in clutches with sand salinity <1500 EC.uS/cm (n = 5) than those above 2500 EC.uS/cm (n = 5). Mean clutch temperatures at 1200 h increased by an average of 5.4 °C during the 50-d post-oviposition from 31.2 °C to 36.6 °C. Embryos experienced lethally high temperatures in addition to impacts of other environmental factors (salinity, moisture, sand grain size), which was related to reduced hatching success. Conservation initiatives must consider the synergistic influence of the above parameters in formulating strategies to improve the overall resilience of the green turtle population in the Arabian Gulf to anthropogenic and climate change-related stressors.
Collapse
Affiliation(s)
- R H Maneja
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - J D Miller
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J B Flint
- One Welfare and Sustainability Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus 43210, OH, USA
| | - J F A Alcaria
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A U Basali
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A V B Flandez
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J Gopalan
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - T Duraisamy
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - J B R Abrogueña
- Environmental Protection and Control Department, Royal Commission for Jubail and Yanbu, Jazan City for Primary and Downstream Industries, Saudi Arabia
| | - A A Bawazier
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - P B Das
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - S Manokaran
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Y Y Asiri
- Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A Qasem
- Environmental Protection Department, Saudi Aramco, Dhahran, Saudi Arabia
| | - K Asfahani
- Environmental Protection Department, Saudi Aramco, Dhahran, Saudi Arabia
| | - M A B Qurban
- National Center for Wildlife, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Rogerson G, Bock S, Loera Y, Parrott B, Mulley JF. Incubation temperature alters stripe formation and head colouration in American alligator hatchlings and is unaffected by estradiol-induced sex reversal. J Exp Biol 2023; 226:jeb245219. [PMID: 36861779 PMCID: PMC10112970 DOI: 10.1242/jeb.245219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness.
Collapse
Affiliation(s)
- Grace Rogerson
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Samantha Bock
- Odum School of Ecology, University of Georgia,Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Yeraldi Loera
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin Parrott
- Odum School of Ecology, University of Georgia,Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - John F. Mulley
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
5
|
Potential impacts of sea level rise and beach flooding on reproduction of sea turtles. CLIMATE CHANGE ECOLOGY 2022. [DOI: 10.1016/j.ecochg.2022.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Unda-Díaz NM, Phillips-Farfán BV, Nava H, Lopez-Toledo L, Murata C, Lajud N, Herrera-Vargas MA, Arreola Camacho CA, Torner L, Fuentes-Farías AL, Meléndez-Herrera E. Negative Effects on Neurogenesis, Ovariogenesis, and Fitness in Sea Turtle Hatchlings Associated to ex situ Incubation Management. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sea turtle egg relocation and hatchery incubation (hereafter termed ex situ incubation) is an effective strategy to protect clutches when in situ egg incubation is not viable. Nevertheless, it negatively affects the ontogenesis of male gonads and brain areas homologous to the mammalian hippocampus, as well as body size and fitness. Thus, it is imperative to analyze the effects of ex situ incubation on other developmental aspects and extend these observations to females. This work evaluated the effect of ex situ management on neurogenesis (cell proliferation in the dorsal and medial ventricular zones, neuronal integration in the dorsomedial and medial cortices), ovary cell proliferation, body size (mass and length) and self-righting ability. Additionally, this study examined if the incubation microenvironment is different between in situ and ex situ nests and whether it could contribute to explain the biological traits. An analysis of principal components showed differences in biological variables of hatchlings between in situ and ex situ clutches, driven by contrasting temperatures and silt composition. Each biological variable was also analyzed with linear mixed models using in situ vs. ex situ clutches, abiotic variables and their interaction. Turtles from ex situ clutches showed: (1) fewer proliferating cells in the dorsal and medial ventricular zones; (2) less mature neurons in the dorsomedial and medial cortices; (3) ovaries with a lesser number of proliferating cells; (4) lower body mass and length at emergence; and (5) slower self-righting time. Together, the results suggest that ex situ incubation in hatcheries is related to a slowing down of neurogenesis, ovariogenesis, body size and self-righting ability in hatchlings. Future studies should evaluate the effect of ex situ incubation on cognitive and reproductive performance to understand the long-term consequences of altered organogenesis. These studies should also disentangle the differential contribution of egg movement, reburial, nesting environment and parental origin to development. This information would likely result in better conservation strategies for sea turtles.
Collapse
|
7
|
Gatto CR, Reina RD. A review of the effects of incubation conditions on hatchling phenotypes in non-squamate reptiles. J Comp Physiol B 2022; 192:207-233. [PMID: 35142902 PMCID: PMC8894305 DOI: 10.1007/s00360-021-01415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022]
Abstract
Developing embryos of oviparous reptiles show substantial plasticity in their responses to environmental conditions during incubation, which can include altered sex ratios, morphology, locomotor performance and hatching success. While recent research and reviews have focused on temperature during incubation, emerging evidence suggests other environmental variables are also important in determining hatchling phenotypes. Understanding how the external environment influences development is important for species management and requires identifying how environmental variables exert their effects individually, and how they interact to affect developing embryos. To address this knowledge gap, we review the literature on phenotypic responses in oviparous non-squamate (i.e., turtles, crocodilians and tuataras) reptile hatchlings to temperature, moisture, oxygen concentration and salinity. We examine how these variables influence one another and consider how changes in each variable alters incubation conditions and thus, hatchling phenotypes. We explore how incubation conditions drive variation in hatchling phenotypes and influence adult populations. Finally, we highlight knowledge gaps and suggest future research directions.
Collapse
Affiliation(s)
- Christopher R Gatto
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia.
| | - Richard D Reina
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
8
|
Yao YT, Du Y, Pan JX, Lin CX, Ji X, You WH. Incubating green turtle (Chelonia mydas) eggs at constant temperatures: Hatching success, hatchling morphology and post-hatch growth. J Therm Biol 2022; 104:103182. [DOI: 10.1016/j.jtherbio.2021.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
|
9
|
Morphometrics and blood analytes of leatherback sea turtle hatchlings (Dermochelys coriacea) from Florida: reference intervals, temporal trends with clutch deposition date, and body size correlations. J Comp Physiol B 2022; 192:313-324. [PMID: 34997274 DOI: 10.1007/s00360-021-01422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The northwest Atlantic leatherback sea turtle (Dermochelys coriacea) population is exhibiting decreasing trends along numerous nesting beaches. Since population health and viability are inherently linked, it is important to establish species- and life-stage class-specific blood analyte reference intervals (RIs) so that effects of future disturbances on organismal health can be better understood. For hatchling leatherbacks, the objectives of this study were to (1) establish RIs for morphometrics and blood analytes; (2) evaluate correlations between hatchling morphometrics, blood analytes, and hatching success; and (3) determine temporal trends in hatchling morphometrics and blood analytes across nesting season. Blood samples were collected from 176 naturally emerging leatherback hatchlings from 18 clutches. Reference intervals were established for morphometrics and blood analytes. Negative relationships were noted between hatchling mass and packed cell volume, total white blood cells, heterophils, lymphocytes, and total protein and between body condition index (BCI) and immature red blood cells (RBC), RBC polychromasia and anisocytosis, and total protein. Clutch deposition date showed positive relationships with lymphocytes and total protein, and negative relationships with hatchling mass and BCI. Hatching success was positively correlated with mass, and negatively with total protein and glucose, suggesting that nutritional provisions in eggs, incubation time, and/or metabolic rates could change later in the season and affect survivorship. These various observed correlations provide evidence for increased physiological stress (e.g., inflammation, subclinical dehydration) in hatchlings emerging later in nesting season, presumably due to increased nest temperatures or other environmental factors (e.g., moisture/rainfall). Data reported herein provide morphometric and blood analyte data for leatherback hatchlings and will allow for future investigations into spatiotemporal trends and responses to various stressors.
Collapse
|
10
|
Robledo-Avila LA, Phillips-Farfán BV, Harfush Meléndez M, Lopez Toledo L, Tafolla Venegas D, Herrera Vargas MA, Ruíz Cortés DV, Meléndez-Herrera E. Short communication: Ex-situ conservation in hatcheries is associated with spleen development in Lepidochelys olivacea turtle hatchlings. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111130. [PMID: 34954346 DOI: 10.1016/j.cbpa.2021.111130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Ex-situ conservation in hatcheries is a successful strategy for the recovery of sea turtle populations. However, it alters the ontogenesis of the brain and gonads, as well as body size and locomotor performance at nest emergence. Relocation to hatcheries may alter immune system development, since this depends highly on the nest environment. We hypothesized that ex-situ brooding would negatively associate with immune traits of Lepidochelys olivacea. Splenic cytoarchitecture and leukocyte quantification were used as proxies for the immune configuration. Body size, gonadal sex and sand temperature during incubation were determined. Additionally, the success of nest hatching and emergence was quantified. Linear mixed models of splenic cytoarchitecture, leucocyte proportions and body size, using sex and nest type as explanatory variables, evaluated the effects of ex-situ brooding. Generalized linear mixed models using quasibinomial distributions (log link) analyzed effects on hatching and emergence success. Hatchlings from ex-situ nests were heavier, larger and showed a greater spleen-somatic index. They showed more and better defined splenic periarteriolar lymphoid sheaths, as well as a higher proportion of heterophils but less monocytes. Moreover, ex-situ brooding increased hatching and emergence success. Sand temperatures in hatcheries favored male sex determination, while the opposite occurred for in-situ incubation. Interestingly, the immune configuration and body size were independent of sex but associated with ex-situ conservation. Greater body size promotes early hatchling survival, while better spleen development is related to a greater antibody production and a better immune response to pathogens. Altogether, the results suggest that ex-situ incubation is associated with a better immune configuration and higher survival success.
Collapse
Affiliation(s)
- Liliana Areli Robledo-Avila
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Bryan Víctor Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán C.P. 04530, Cd. de México, México
| | | | - Leonel Lopez Toledo
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - David Tafolla Venegas
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica s/n, Ciudad Universitaria, 58030 Morelia, Michoacán, México
| | - Ma Antonia Herrera Vargas
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Diana Vanessa Ruíz Cortés
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México.
| |
Collapse
|
11
|
Field A, McGlashan JK, Salmon M. Evidence for Synchronous Hatching in Marine Turtle (Caretta caretta) Embryos and Its Influence on the Timing of Nest Emergence. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1489.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Angela Field
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431 USA [; ]
| | - Jessica K. McGlashan
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 2751 Australia []
| | - Michael Salmon
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431 USA [; ]
| |
Collapse
|
12
|
Gaviria-Hernández J, Páez VP, Ramírez DM, Ceballos CP. Embryo Development and Sex Ratios in the Red-Footed Tortoise (Chelonoidis carbonarius) at Masculinizing Temperatures. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1441.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juliana Gaviria-Hernández
- Grupo GAMMA, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia [; ]
| | - Vivian P. Páez
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia []
| | - Diber M. Ramírez
- Centro de Atención y Valoración del Área Metropolitana del Valle de Aburrá, Medellín, Colombia []
| | - Claudia P. Ceballos
- Grupo GAMMA, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia [; ]
| |
Collapse
|
13
|
Patrício AR, Hawkes LA, Monsinjon JR, Godley BJ, Fuentes MMPB. Climate change and marine turtles: recent advances and future directions. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Climate change is a threat to marine turtles that is expected to affect all of their life stages. To guide future research, we conducted a review of the most recent literature on this topic, highlighting knowledge gains and research gaps since a similar previous review in 2009. Most research has been focussed on the terrestrial life history phase, where expected impacts will range from habitat loss and decreased reproductive success to feminization of populations, but changes in reproductive periodicity, shifts in latitudinal ranges, and changes in foraging success are all expected in the marine life history phase. Models have been proposed to improve estimates of primary sex ratios, while technological advances promise a better understanding of how climate can influence different life stages and habitats. We suggest a number of research priorities for an improved understanding of how climate change may impact marine turtles, including: improved estimates of primary sex ratios, assessments of the implications of female-biased sex ratios and reduced male production, assessments of the variability in upper thermal limits of clutches, models of beach sediment movement under sea level rise, and assessments of impacts on foraging grounds. Lastly, we suggest that it is not yet possible to recommend manipulating aspects of turtle nesting ecology, as the evidence base with which to understand the results of such interventions is not robust enough, but that strategies for mitigation of stressors should be helpful, providing they consider the synergistic effects of climate change and other anthropogenic-induced threats to marine turtles, and focus on increasing resilience.
Collapse
Affiliation(s)
- AR Patrício
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - LA Hawkes
- Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Streatham Campus, Exeter EX4 4PS, UK
| | - JR Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6139, South Africa
| | - BJ Godley
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Wyneken J, Salmon M. Linking Ecology, Morphology, and Behavior to Conservation: Lessons Learned from Studies of Sea Turtles. Integr Comp Biol 2020; 60:440-455. [PMID: 32617553 DOI: 10.1093/icb/icaa044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we describe examples of studies that have contributed both to a basic understanding of the biology of imperiled marine turtles, and to their management and conservation. Key elements include, first and foremost, correctly identifying species that differ strikingly in their morphology at different life stages because with growth, they change size by several orders of magnitude and have accompanying shape changes. We also review comprehensive field studies documenting the need for management actions to correct abnormal shifts in sex ratios caused by climate change. We highlight the need to describe those perturbations in terms that are clear to regulators and personnel responsible for management and conservation policies. Finally, we review several basic studies that enhance our understanding of how selection has shaped morphological, functional, and performance attributes, and describe how that knowledge can be applied to the tasks required for enhancing species recovery.
Collapse
Affiliation(s)
- Jeanette Wyneken
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Michael Salmon
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| |
Collapse
|