1
|
Wada T, Suzuki S, Kanasashi T, Nanba K. Distinct food-web transfers of 137Cs to fish in river and lake ecosystems: A case study focusing on masu salmon in the Fukushima evacuation zone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107541. [PMID: 39317062 DOI: 10.1016/j.jenvrad.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
This study was conducted to elucidate the spatial and size variations, and food-web transfer of 137Cs in freshwater fish in the upper reaches of the Ukedo River system, a highly contaminated river system flowing through the Fukushima evacuation zone. Fish collection and environmental surveys were conducted in the summer of 2020 at five forest rivers and at the Ogaki Dam reservoir (an artificial lake) with different air dose rates (mean 0.20-3.32 μSv/h). From the river sites, two salmonid species (masu salmon and white-spotted charr) were sampled, with masu salmon generally exhibiting higher 137Cs concentrations, ranging widely (10.6 Bq/kg-wet to 13.0 kBq/kg-wet) depending on the fish size (size effect) and site. The 137Cs concentrations in masu salmon were explained by the air dose rates, 137Cs concentrations in water, sediments (excluding the lake site), and primary producers, with site-specific variations. In the rivers, masu salmon (fluvial type with parr marks) mainly fed on terrestrial insects with higher 137Cs concentrations compared with those of aquatic insects, indicating that 137Cs was transferred mainly to fish through the allochthonous forest food-web during summer. In the lake, masu salmon (lake-run type with larger size and silvery body coloration) mainly preyed on smaller fish with lower 137Cs concentrations, demonstrating that 137Cs is transferred to fish through the autochthonous lake food-web with biomagnification. Differences in 137Cs concentrations among masu salmon (mean 441 Bq/kg-wet) and other fish species (mean 74.8 Bq/kg-wet to 2.35 kBq/kg-wet) were also found in the lake. The distinct 137Cs transfers to river and lake fish were supported by stable isotope analysis: δ15N and δ13C values enriched stepwisely through the food-webs were, respectively, higher and lower in the lake. Our results obtained using multiple approaches clearly revealed the distinct food-web transfer of 137Cs in river and lake ecosystems. These findings can contribute to prediction of radioactive contamination in freshwater fish in the Fukushima evacuation zone.
Collapse
Affiliation(s)
- Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima 960-1296, Japan.
| | - Shingo Suzuki
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Fukushima 960-1296, Japan
| | - Tsutomu Kanasashi
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima 960-1296, Japan
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima 960-1296, Japan; Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Fukushima 960-1296, Japan
| |
Collapse
|
2
|
Millette NC, Gast RJ, Luo JY, Moeller HV, Stamieszkin K, Andersen KH, Brownlee EF, Cohen NR, Duhamel S, Dutkiewicz S, Glibert PM, Johnson MD, Leles SG, Maloney AE, Mcmanus GB, Poulton N, Princiotta SD, Sanders RW, Wilken S. Mixoplankton and mixotrophy: future research priorities. JOURNAL OF PLANKTON RESEARCH 2023; 45:576-596. [PMID: 37483910 PMCID: PMC10361813 DOI: 10.1093/plankt/fbad020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 07/25/2023]
Abstract
Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.
Collapse
Affiliation(s)
| | - Rebecca J Gast
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Jessica Y Luo
- NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, 1120 Noble Hall, Santa Barbara, CA 93106, USA
| | - Karen Stamieszkin
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Ken H Andersen
- Center for Ocean Life, Natl. Inst. of Aquatic Resources, Technical University of Denmark, Kemitorvet, Bygning 202, Kongens Lyngby 2840, Denmark
| | - Emily F Brownlee
- Department of Biology, St. Mary’s College of Maryland, 18952 E. Fisher Road, St. Mary’s City, MD 20686, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, The University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721, USA
| | - Stephanie Dutkiewicz
- Center for Global Change Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02874, USA
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Rd, Cambridge, MD 21613, USA
| | - Matthew D Johnson
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Suzana G Leles
- Department of Marine and Environmental Biology, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Ashley E Maloney
- Geosciences Department, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
| | - George B Mcmanus
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT 06340, USA
| | - Nicole Poulton
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Sarah D Princiotta
- Biology Department, Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Robert W Sanders
- Department of Biology, Temple University, 1900 N. 12th St., Philadelphia, PA 19122, USA
| | - Susanne Wilken
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
3
|
Groß E, Di Pane J, Boersma M, Meunier CL. River discharge-related nutrient effects on North Sea coastal and offshore phytoplankton communities. JOURNAL OF PLANKTON RESEARCH 2022; 44:947-960. [PMID: 36447777 PMCID: PMC9692191 DOI: 10.1093/plankt/fbac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
As a result of climate change, an increasing number of extreme weather events can be observed. Heavy precipitation events can increase river discharge which causes an abrupt increase of nutrient-rich freshwater into coastal zones. We investigated the potential consequences of nutrient-rich freshwater pulses on phytoplankton communities from three stations in the North Sea. After incubating the phytoplankton cultures with a gradient of nutrient-rich freshwater, we analyzed changes in community diversity, average cell size, growth rate and elemental stoichiometry. Pulses of nutrient-rich freshwater have caused an increase in the growth rate of the phytoplankton communities at two of the three stations and a decrease in cell size within the taxonomic groups of flagellates and diatoms at all stations, indicating a positive selection in favor of smaller taxa. In addition, we observed a decrease in the molar N:P ratio of the phytoplankton communities. Overall, the response of phytoplankton was highly dependent on the initial community structure at each sampling site. Our study demonstrates that the biomass and functional structure of North Sea phytoplankton communities could be altered by an abrupt increase in river discharge, which could have further consequences for higher trophic levels and short-term food web dynamics in the North Sea.
Collapse
Affiliation(s)
| | - Julien Di Pane
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland 27498, Germany
| | - Maarten Boersma
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland 27498, Germany
- FB2, University of Bremen, FB2, Bremen 28359, Germany
| | - Cédric L Meunier
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland 27498, Germany
- FB2, University of Bremen, FB2, Bremen 28359, Germany
| |
Collapse
|