1
|
Wilson K, Arunachalam S. Microbiome transition mediated plant immune response to Alternaria solani (Ellis & Martin) Jones & Grout infection in tomato ( Solanum lycopersicum L.). Heliyon 2024; 10:e37203. [PMID: 39296181 PMCID: PMC11409117 DOI: 10.1016/j.heliyon.2024.e37203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Alternaria solani (Ellis & Martin) Jones & Grout, causing early blight infection in solanaceous crops, is a growing threat influencing sustainable crop production. Understanding the variation in the foliar microbiome, particularly the bacterial community during pathogenesis, can provide critical information on host-pathogen interactions, highlighting the host immune response during pathogen invasion. In the present study, early blight (EB) infection was artificially induced in tomato leaves, and the transition in the foliar bacterial community from healthy leaf tissue to infected leaves was analyzed. The 16s sequencing data revealed a significant shift in alpha and beta diversity, with infected leaf tissue exhibiting considerably lower bacterial abundance and diversity. Further interpretation at the genus level highlighted the possible role of the host immune system in recruiting higher nitrogen-fixing bacteria to resist the pathogen. The study, in addition to analyzing the foliar bacterial community transition during pathogenesis, has also shed light on the possible strategy employed by the host in recruiting selective nutrient-enriching microbes. Further application of this research in developing biocontrol agents with higher microbial host colonizing ability will be of tremendous benefit in achieving sustainable EB control measures.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Hansen ZA, Fulcher MR, Wornson N, Spawn-Lee SA, Johnson M, Song Z, Michalska-Smith M, May G, Seabloom EW, Borer ET, Kinkel LL. Soil nutrient amendment increases the potential for inter-kingdom resource competition among foliar endophytes. ISME COMMUNICATIONS 2024; 4:ycae130. [PMID: 39583585 PMCID: PMC11586052 DOI: 10.1093/ismeco/ycae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function.
Collapse
Affiliation(s)
- Zoe A Hansen
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Michael R Fulcher
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD 21702, United States
| | - Nicholas Wornson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Seth A Spawn-Lee
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mitch Johnson
- Department of Horticulture, University of Minnesota, Saint Paul, MN 55108, United States
| | - Zewei Song
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
3
|
Xing L, Zhi Q, Hu X, Liu L, Xu H, Zhou T, Yin H, Yi Z, Li J. Influence of Association Network Properties and Ecological Assembly of the Foliar Fugal Community on Crop Quality. Front Microbiol 2022; 13:783923. [PMID: 35479639 PMCID: PMC9037085 DOI: 10.3389/fmicb.2022.783923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Revealing community assembly and their impacts on ecosystem service is a core issue in microbial ecology. However, what ecological factors play dominant roles in phyllosphere fungal community assembly and how they link to crop quality are largely unknown. Here, we applied internal transcriptional spacer high-throughput sequencing to investigate foliar fungal community assembly across three cultivars of a Solanaceae crop (tobacco) and two planting regions with different climatic conditions. Network analyses were used to reveal the pattern in foliar fungal co-occurrence, and phylogenetic null model analysis was used to elucidate the ecological assembly of foliar fungal communities. We found that the sensory quality of crop leaves and the composition of foliar fungal community varied significantly across planting regions and cultivars. In Guangcun (GC), a region with relatively high humidity and low precipitation, there was a higher diversity and more unique fungal species than the region of Wuzhishan (WZS). Further, we found that the association network of foliar fungal communities in GC was more complex than that in WZS, and the network properties were closely related to the sensory quality of crop. Finally, the results of the phylogenetic analyses show that the stochastic processes played important roles in the foliar fungal community assembly, and their relative importance was significantly correlated with the sensory quality of crop leaves, which implies that ecological assembly processes could affect crop quality. Taken together, our results highlight that climatic conditions, and plant cultivars play key roles in the assembly of foliar fungal communities and crop quality, which enhances our understanding of the connections between the phyllosphere microbiome and ecosystem services, especially in agricultural production.
Collapse
Affiliation(s)
- Lei Xing
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xi Hu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Lulu Liu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Heng Xu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Ting Zhou
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Tao J, Cao P, Xiao Y, Wang Z, Huang Z, Jin J, Liu Y, Yin H, Liu T, Zhou Z. Distribution of the potential pathogenic Alternaria on plant leaves determines foliar fungal communities around the disease spot. ENVIRONMENTAL RESEARCH 2021; 200:111715. [PMID: 34297933 DOI: 10.1016/j.envres.2021.111715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Plant leaves are colonized by a remarkably diverse fungal microbiome, which contributes to host plant growth and health. However, responses of foliar fungal community to phytopathogen invasion and measures of the fungal community taken to resist or assist pathogens remain elusive. By utilizing high-throughput sequencing of internal transcribed spacer (ITS) amplicons, we studied the relationships between the foliar fungal community around the disease spot and the pathogen of brown spot disease. The pathogenic Alternaria was found to follow a dramatically decreased trend from the disease spot to its surrounding fungal communities, whose community structure also diverged substantially away from the disease spot community. With the increase of pathogenic Alternaria, diversity indexes, including Shannon, Pielou and Simpson, showed a trend of increasing first and then decreasing. Total network links and the average path distance exhibited strong negative and positive correlations with Alternaria, respectively. Five keystone members showed direct interactions with pathogenic Alternaria. Members of Botryosphaeria, Paraphoma and Plectosphaerella might act as key 'pathogen facilitators' to increase the severity and development of brown spot disease, while Pleospora and Ochrocladosporium might be important 'pathogen antagonists' to suppress the expansion of pathogenic Alternaria. Our study provides new insights in developing new strategies for leaf disease prediction or prevention.
Collapse
Affiliation(s)
- Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, 423000, China
| | - Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, 427000, China
| | - Zhihua Huang
- Yuxi Tobacco Company of Yunnan Province, Yuxi, 653100, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yongjun Liu
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Tianbo Liu
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China; College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhicheng Zhou
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China.
| |
Collapse
|