1
|
Grunst AS, Grunst ML. Animal personality in multiple stressor environments: the evolutionary ecology of among-individual differences in responses to stressor suites. Proc Biol Sci 2024; 291:20241620. [PMID: 39437842 PMCID: PMC11495964 DOI: 10.1098/rspb.2024.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Animal personality differences may have evolved as alternative strategies for negotiating multiple stressor landscapes. Indeed, ecologists are increasingly recognizing that interactions among multiple stressors can transform selective landscapes and behavioural and physiological responses to stress regimes. Yet, evaluating this hypothesis poses challenges, as most studies involving relationships between personality variation and the environment consider single stressors. Here, we review the literature to explore the theory and evidence that multiple stressor environments may mediate personality variation. We consider effects on evolution of personality variation, as influenced by life-history, energetic and behavioural trade-offs, and effects on phenotypic expression of personality traits. We then explore how personality variation may modulate behavioural and physiological responses to multiple stressors, and how differential responses may be affected by personality-dependent movement ecology and cognitive strategies. Among-individual differences in responses to multiple stressors are critical to elucidate, as multi-stress interactions may transform animal behavioural and physiological responses relative to those predicted under single stressor scenarios, and because among-individual variation comprises the basis for evolutionary shifts in stress responsiveness and population resiliency to global environmental change.
Collapse
Affiliation(s)
- Andrea S. Grunst
- Department of Biology, Indiana State University, Terre Haute, IN47809, USA
| | - Melissa L. Grunst
- Department of Biology, Indiana State University, Terre Haute, IN47809, USA
| |
Collapse
|
2
|
Gan L, Tian S, Wang D, Liu W. Boldness suppresses hoarding behavior in food hoarding season and reduces over-wintering survival in a social rodent. Ecol Evol 2024; 14:e11252. [PMID: 38601856 PMCID: PMC11004661 DOI: 10.1002/ece3.11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The "pace-of-life" syndrome (POLS) framework can encompass multiple personality axes that drive important functional behaviors (e.g., foraging behavior) and that co-vary with multiple life history traits. Food hoarding is an adaptive behavior important for an animal's ability to adapt to seasonal fluctuations in food availability. However, the empirical evidence for the relationships between animal personality and hoarding behavior remains unclear, including its fitness consequences in the POLS framework. In this study, the Mongolian gerbil (Meriones unguiculatus), a social rodent, was used as a model system to investigate how boldness or shyness is associated with food hoarding strategies during the food hoarding season and their impact on over-winter survival and reproduction at both individual and group levels. The results of this study showed that, compared with shy gerbils, bold gerbils had a lower effort foraging strategy during the food hoarding season and exhibited lower over-winter survival rates. However, bold-shy personality differences had no effect on over-winter reproduction. These findings suggest that the personality is a crucial factor influencing the foraging strategy during the food hoarding season in Mongolian gerbils. Personality may be related to energy states or the reaction to environmental changes (e.g., predation risk and food availability) in bold or shy social animals. These results reflect animal life history trade-offs between current versus future reproduction and reproduction versus self-maintenance, thereby helping Mongolian gerbils in adapting to seasonal fluctuations in their habitat.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shuang‐Jie Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - De‐Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life SciencesShandong UniversityQingdaoChina
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Rickward RA, Santostefano F, Wilson AJ. Among-individual behavioural variation in the ornamental red cherry shrimp, Neocaridina heteropoda. Ecol Evol 2024; 14:e11049. [PMID: 38389999 PMCID: PMC10883255 DOI: 10.1002/ece3.11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Personality variation, defined as among-individual differences in behaviour that are repeatable across time and context, is widely reported across animal taxa. From an evolutionary perspective, characterising the amount and structure of this variation is useful since differences among individuals are the raw material for adaptive behavioural evolution. However, behavioural variation among individuals also has implications for more applied areas of evolution and ecology-from invasion biology to ecotoxicology and selective breeding in captive systems. Here, we investigate the structure of personality variation in the red cherry shrimp, Neocaridina heteropoda, a popular ornamental species that is readily kept and bred under laboratory conditions and is emerging as a decapod crustacean model across these fields, but for which basic biological, ecological and behavioural data are limited. Using two assays and a repeated measures approach, we quantify behaviours putatively indicative of shy-bold variation and test for sexual dimorphism and/or size-dependent behaviours (as predicted by some state-dependent models of personality). We find moderate-to-high behavioural repeatabilities in most traits. Although strong individual-level correlations across behaviours are consistent with a major personality axis underlying these observed traits, the multivariate structure of personality variation does not fully match a priori expectations of a shy-bold axis. This may reflect our ecological naivety with respect to what really constitutes bolder, more risk-prone, behaviour in this species. We find no evidence for sexual dimorphism and only weak support for size-dependent behaviour. Our study contributes to the growing literature describing behavioural variation in aquatic invertebrates. Furthermore, it lays a foundation for further studies harnessing the potential of this emerging model system. In particular, this existing behavioural variation could be functionally linked to life-history traits and invasive success and serve as a target of artificial selection or bioassays. It thus holds significant promise in applied research across ecotoxicology, aquaculture and invasion biology.
Collapse
Affiliation(s)
| | - Francesca Santostefano
- Centre for Ecology and ConservationUniversity of ExeterCornwallUK
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | |
Collapse
|
4
|
Broecke BV, Tafompa PJJ, Mwamundela BE, Bernaerts L, Ribas A, Mnyone LL, Leirs H, Mariën J. Drivers behind co-occurrence patterns between pathogenic bacteria, protozoa, and helminths in populations of the multimammate mouse, Mastomys natalensis. Acta Trop 2023; 243:106939. [PMID: 37156346 DOI: 10.1016/j.actatropica.2023.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Advances in experimental and theoretical work increasingly suggest that parasite interactions within a single host can affect the spread and severity of wildlife diseases. Yet empirical data to support predicted co-infection patterns are limited due to the practical challenges of gathering convincing data from animal populations and the stochastic nature of parasite transmission. Here, we investigated co-infection patterns between micro- (bacteria and protozoa) and macroparasites (gastro-intestinal helminths) in natural populations of the multimammate mouse (Mastomys natalensis). Fieldwork was performed in Morogoro (Tanzania), where we trapped 211 M. natalensis and tested their behaviour using a modified open-field arena. All animals were checked for the presence of helminths in their gastro-intestinal tract, three bacteria (Anaplasma, Bartonella, and Borrelia) and two protozoan genera (Babesia and Hepatozoon). Besides the presence of eight different helminth genera (reported earlier), we found that 21% of M. natalensis were positive for Anaplasma, 13% for Bartonella, and 2% for Hepatozoon species. Hierarchical modelling of species communities was used to investigate the effect of the different host-related factors on these parasites' infection probability and community structure. Our results show that the infection probability of Bartonella increased with the host's age, while the infection probability of Anaplasma peaked when individuals reached adulthood. We also observed that less explorative and stress-sensitive individuals had a higher infection probability with Bartonella. Finally, we found limited support for within-host interactions between micro-and macroparasites, as most co-infection patterns could be attributed to host exposure time.
Collapse
Affiliation(s)
- Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | - Lisse Bernaerts
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Ladslaus L Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium; Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.
| |
Collapse
|
5
|
Can animal personalities save human lives? Evidence for repeatable differences in activity and anxiety in African giant pouched rats (Cricetomys ansorgei). Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Milles A, Dammhahn M, Jeltsch F, Schlägel U, Grimm V. Fluctuations in density-dependent selection drive the evolution of a pace-of-life-syndrome within and between populations. Am Nat 2021; 199:E124-E139. [DOI: 10.1086/718473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Vanden Broecke B, Bernaerts L, Ribas A, Sluydts V, Mnyone L, Matthysen E, Leirs H. Linking Behavior, Co-infection Patterns, and Viral Infection Risk With the Whole Gastrointestinal Helminth Community Structure in Mastomys natalensis. Front Vet Sci 2021; 8:669058. [PMID: 34485424 PMCID: PMC8415832 DOI: 10.3389/fvets.2021.669058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Infection probability, load, and community structure of helminths varies strongly between and within animal populations. This can be ascribed to environmental stochasticity or due to individual characteristics of the host such as their age or sex. Other, but understudied, factors are the hosts' behavior and co-infection patterns. In this study, we used the multimammate mouse (Mastomys natalensis) as a model system to investigate how the hosts' sex, age, exploration behavior, and viral infection history affects their infection risk, parasitic load, and community structure of gastrointestinal helminths. We hypothesized that the hosts' exploration behavior would play a key role in the risk for infection by different gastrointestinal helminths, whereby highly explorative individuals would have a higher infection risk leading to a wider diversity of helminths and a larger load compared to less explorative individuals. Fieldwork was performed in Morogoro, Tanzania, where we trapped a total of 214 individual mice. Their exploratory behavior was characterized using a hole-board test after which we collected the helminths inside their gastrointestinal tract. During our study, we found helminths belonging to eight different genera: Hymenolepis sp., Protospirura muricola, Syphacia sp., Trichuris mastomysi, Gongylonema sp., Pterygodermatites sp., Raillietina sp., and Inermicapsifer sp. and one family: Trichostrongylidae. Hierarchical modeling of species communities (HMSC) was used to investigate the effect of the different host-related factors on the infection probability, parasite load, and community structure of these helminths. Our results show that species richness was higher in adults and in females compared to juveniles and males, respectively. Contrary to our expectations, we found that less explorative individuals had higher infection probability with different helminths resulting in a higher diversity, which could be due to a higher exposure rate to these helminths and/or behavioral modification due to the infection.
Collapse
Affiliation(s)
- Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Lisse Bernaerts
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, IRBio (Research Institute of Biodiversity), University of Barcelona, Barcelona, Spain
| | - Vincent Sluydts
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ladslaus Mnyone
- Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|