1
|
Mamin M, Clancy MV, Flückiger G, Quijano-Medina T, Pérez-Niño B, Abdala-Roberts L, Turlings TCJ, Bustos-Segura C. Induction by caterpillars of stored and emitted volatiles in terpene chemotypes from populations of wild cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2025; 25:127. [PMID: 39885387 PMCID: PMC11781055 DOI: 10.1186/s12870-025-06088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Upland cotton (Gossypium hirsutum) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds. This has been well characterised for cultivated G. hirsutum, but little is known about volatile production in response to herbivory in wild populations. We investigated how damage by a generalist herbivore species, the beet armyworm (Spodoptera exigua), affects leaf-stored and emitted volatiles in wild G. hirsutum plants and compared the responses of two known chemotypes. Wild cotton plants were grown in a greenhouse from seeds collected from four distinct locations covering sixteen populations, along the Yucatan coast (Mexico), from where this cotton species originates. We assessed whether the differences in leaf terpene profiles between the two chemotypes persisted upon herbivory, in leaves and in headspace emissions, and whether these chemotypes also differed in the production and release of herbivory-induced volatiles. In addition to chemotypic variation, we further investigated intraspecific variation in the volatile response to herbivory among genotypes, populations, and the four geographic regions. RESULTS The difference between the two chemotypes persisted after herbivory in the stored volatile profile of induced leaves, as well as in the emissions from damaged plants. Therefore, wild cotton chemotypes may differ in their airborne interactions with their environment. The specific terpenes distinguishing these chemotypes showed a weak inducibility, raising questions about their functions. Herbivory triggered changes in stored and emitted volatiles similar to what is known for cultivated varieties of G. hirsutum. However, we report for the first time on the emission of volatile aldoximes by cotton plants, which were only detected in the headspace upon herbivory, and displayed chemotypic and interpopulation variation. Intraspecific variation was also observed in the induced emissions of nitriles and certain terpenes. Moreover, chemotypes differed in their induction of (E)-β-ocimene stored in the leaves. CONCLUSIONS This comprehensive insight into herbivore-induced volatiles of wild cotton reveals variation in production and emission among populations. A full understanding of their ecological role may help in the development of future pest-management strategies for cotton crops.
Collapse
Affiliation(s)
- Marine Mamin
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mary V Clancy
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Galien Flückiger
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Biiniza Pérez-Niño
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Ted C J Turlings
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Carlos Bustos-Segura
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
- Institute of Ecology and Environmental Sciences-Paris, INRAE, Sorbonne Université, CNRS, IRD, Université de Paris, UPEC, Route de St Cyr, Versailles, 78026, France.
| |
Collapse
|
2
|
Yang Z, Yang X, Wei S, Shen F, Ji W. Exogenous melatonin delays leaves senescence and enhances saline and alkaline stress tolerance in grape seedlings. PLANT SIGNALING & BEHAVIOR 2024; 19:2334511. [PMID: 38650457 PMCID: PMC11042054 DOI: 10.1080/15592324.2024.2334511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.
Collapse
Affiliation(s)
- Zhongyi Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xixi Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shimei Wei
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| | - Fengfeng Shen
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
- Yuncheng Agriculture and Rural Bureau, Yuncheng, Shanxi, China
| |
Collapse
|
3
|
Grandi L, Ye W, Clancy MV, Vallat A, Glauser G, Abdala‐Roberts L, Brevault T, Benrey B, Turlings TCJ, Bustos‐Segura C. Plant-to-plant defence induction in cotton is mediated by delayed release of volatiles upon herbivory. THE NEW PHYTOLOGIST 2024; 244:2505-2517. [PMID: 39417446 PMCID: PMC11579441 DOI: 10.1111/nph.20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Caterpillar feeding immediately triggers the release of volatile compounds stored in the leaves of cotton plants. Additionally, after 1 d of herbivory, the leaves release other newly synthesised volatiles. We investigated whether these volatiles affect chemical defences in neighbouring plants and whether such temporal shifts in emissions matter for signalling between plants. Undamaged receiver plants were exposed to volatiles from plants infested with Spodoptera caterpillars. For receiver plants, we measured changes in defence-related traits such as volatile emissions, secondary metabolites, phytohormones, gene expression, and caterpillar feeding preference. Then, we compared the effects of volatiles emitted before and after 24 h of damage on neighbouring plant defences. Genes that were upregulated in receiver plants following exposure to volatiles from damaged plants were the same as those activated directly by herbivory on a plant. Only volatiles emitted after 24 h of damage, including newly produced volatiles, were found to increase phytohormone levels, upregulate defence genes, and enhance resistance to caterpillars. These results indicate that the defence induction by volatiles is a specific response to de novo synthesised volatiles, suggesting that these compounds are honest signals of herbivore attack. These findings point to an adaptive origin of airborne signalling between plants.
Collapse
Affiliation(s)
- Luca Grandi
- Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
| | - Wenfeng Ye
- Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Mary V. Clancy
- Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of ChemistryUniversity of NeuchâtelAvenue de Bellevaux 51Neuchâtel2000Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Institute of ChemistryUniversity of NeuchâtelAvenue de Bellevaux 51Neuchâtel2000Switzerland
| | - Luis Abdala‐Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánKm. 15.5 Carretera Mérida‐Xtmakuil s/nMéridaYucatán97200Mexico
| | - Thierry Brevault
- CIRAD, UPR AIDA, Biopass, Centre de recherche ISRA‐IRDDakarPH49+5VJSenegal
- AIDA, Univ Montpellier, CIRADMontpellier34980France
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
| | - Ted C. J. Turlings
- Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
| | - Carlos Bustos‐Segura
- Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- Institute of Ecology and Environmental Sciences‐Paris, INRAE, Sorbonne Université, CNRS, IRDUniversité de Paris, UPECRoute de St CyrVersailles78026France
| |
Collapse
|
4
|
Zhang Q, Wang Q, Wyckhuys KAG, Jin S, Lu Y. Salinity stress alters plant-mediated interactions between above- and below-ground herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173687. [PMID: 38830424 DOI: 10.1016/j.scitotenv.2024.173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Below-ground herbivory impacts plant development and often induces systemic responses in plants that affect the performance and feeding behavior of above-ground herbivores. Meanwhile, pest-damaged root tissue can enhance a plant's susceptibility to abiotic stress such as salinity. Yet, the extent to which herbivore-induced plant defenses are modulated by such abiotic stress has rarely been studied. In this study, we examine whether root feeding by larvae of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) affects the performance of the above-ground, sap-feeding aphid Aphis gossypii (Hemiptera: Aphididae) on cotton, and assess whether those interactions are modulated by salinity stress. In the absence of salinity stress, A. segetum root feeding does not affect A. gossypii development. On the other hand, under intense salinity stress (i.e., 600 mM NaCl), A. segetum root feeding decreases aphid development time by 16.1 % and enhances fecundity by 72.0 %. Transcriptome, metabolome and bioassay trials showed that root feeding and salinity stress jointly trigger the biosynthesis of amino acids in cotton leaves. Specifically, increased titers of valine in leaf tissue relate to an enhanced performance of A. gossypii. Taken together, salinity stress alters the interaction between above- and below-ground feeders by changing amino acid accumulation. Our findings advance our understanding of how plants cope with concurrent biotic and abiotic stressors, and may help tailor plant protection strategies to varying production contexts.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; School of Biological Sciences, University of Queensland, Saint Lucia 4072, Australia; Chrysalis Consulting, Danang 50000, Viet Nam
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
5
|
Sobhy IS, Gurr GM, Hefin Jones T. Induced plant resistance and its influence on natural enemy use of plant-derived foods. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101218. [PMID: 38838913 DOI: 10.1016/j.cois.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
In response to herbivory, plants employ several inducible defenses to mitigate herbivore damage. These plant-induced responses can trigger subtle changes in plant metabolite composition, altering the profiles of plant-produced exudates such as (extra-) floral nectar and plant guttation. Natural enemies consume these plant-produced exudates, which serve as consistent and nutrient-dense food sources. There is mounting evidence that natural enemies' access to plant-produced exudates impacts their fitness, performance, and life history traits. Nonetheless, the role of induced plant defense on plant-produced exudates and the subsequent effect on natural enemies remains under-researched. This review, thus, highlights the potential role of induced plant defense on the profiles of plant-produced exudates, with a particular emphasis on altered metabolic changes affecting resource nutritional value and consequently the fitness and performance of natural enemies. Future directions and potential implications in biological control practices are also highlighted.
Collapse
Affiliation(s)
- Islam S Sobhy
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Geoff M Gurr
- Gulbali Institute, Charles Sturt University, Leeds Parade, Orange NSW 2800, Australia
| | - T Hefin Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
6
|
Sun Q, Zhang R, Liu Y, Niu L, Liu H, Ren P, Xu B, Guo B, Zhang B. Insights into "wheat aroma": Analysis of volatile components in wheat grains cultivated in saline-alkali soil. Food Res Int 2024; 183:114211. [PMID: 38760139 DOI: 10.1016/j.foodres.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
The wheat grains that are cultivated in saline-alkali soil exhibit a richer "wheat aroma" compared to their counterparts. This study characterized the composition and content of volatiles in five wheat kernel varieties, harvested from two fields with varying pH levels and total salt content in the soil. The wheat grown in soil with high pH and total salt content had significantly lower levels (p < 0.05) of ethyl 3-methylbutanoate and 1-octen-3-one and significantly higher levels (p < 0.05) of 1-butanol and 1-octen-3-ol. Among all factors, plant site contributed the highest F-value contribution rate (more than 77 %) for these four volatile compounds. Six e-nose sensors responsive to these four compounds exhibited consistent trends. Therefore, the lower of ethyl 3-methylbutanoate and 1-octen-3-one, the higher of 1-butanol and 1-octen-3-ol in wheat, grown on saline-alkali soil, served as characteristic markers for "wheat aroma".
Collapse
Affiliation(s)
- Qianqian Sun
- Institute of Food Science and Technology, CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Rui Zhang
- Institute of Food Science and Technology, CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yu Liu
- Institute of Food Science and Technology, CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liya Niu
- CangZhou Academy of Agriculture and Forestry Sciences /Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, Hebei, China
| | - Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Peifang Ren
- Hanon Advanced Technology Group Co., Ltd., Shandong, China
| | - Bianna Xu
- Shanghai Bosin Industrial Development Co., Ltd, Shanghai, China
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Bo Zhang
- Institute of Food Science and Technology, CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|