1
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
2
|
Shehata M, Zaki M, Fekry AM. New Au/chitosan nanocomposite modified carbon paste sensor for voltammetric detection of nicotine. Sci Rep 2023; 13:20432. [PMID: 37993635 PMCID: PMC10665326 DOI: 10.1038/s41598-023-47703-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
A profoundly touchy voltammetric sensor for detection of nicotine (NIC) in urine and tobacco specimens has been developed in light of the boosted electrochemical response of NIC at gold and chitosan nanocomposite modified carbon paste electrode (ACMCPE). Material characterization techniques Scanning Electron Microscope and Energy Dispersive X-ray (SEM & EDX) were utilized to describe the ACMCPE surface material. The impedance spectroscopy technique (EIS), cyclic voltammetry (CV), chronoamperometry (CA), and differential pulse voltammetry (DPV) were employed to explore the electrochemical sensing of NIC at ACMCPE. The created sensor exhibits an exceptional electrochemical sensitivity to NIC in a universal Britton-Robinson (B-R) buffer solution with a pH range of 2.0 to 8.0. The sensor shows a linear response over NIC concentration ranges of 4.0-320.0 µM, with the detection limit (LOD) of 7.6 µM. The prepared sensor has been shown to be exceptionally viable in detecting NIC with amazing selectivity and reproducibility. We suggest it as a trustworthy and useful electrochemical sensor for NIC location.
Collapse
Affiliation(s)
- M Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - M Zaki
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amany M Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Torres-Ferrer LR, López-Romero JM, Mendez-Nonell J, Rivas-Arreola MJ, Moreno-Ríos M, Ávila-Dávila EO, Prokhorov E, Kovalenko Y, Zárate-Triviño DG, Revilla-Vazquez JR, Meraz-Rios MA, Luna-Barcenas G. Tuning HAuCl4/Sodium Citrate Stoichiometry to Fabricate Chitosan-Au Nanocomposites. Polymers (Basel) 2022; 14:polym14040788. [PMID: 35215700 PMCID: PMC8879739 DOI: 10.3390/polym14040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Nanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However, this process remains limited due to the need for proper synthesis-property strategies. Herein, we report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable properties by chemically reducing HAuCl4 in chitosan solutions and different HAuCl4/sodium citrate molar relationships. The structure, electrical, and relaxation properties of nanocomposites have been investigated as a function of HAuCl4/sodium citrate molar relation. It was shown that gold particle size, conductivity, Vogel temperature (glass transition), and water content strongly depend upon HAuCl4/sodium citrate relationships. Two relaxation processes have been observed in nanocomposites; the α-relaxation process, related to a glass transition in wet CS/AuNP films, and the σ-relaxation related to the local diffusion process of ions in a disordered system. The ability to fine-tune both α- and σ-relaxations may be exploited in the proper design of functional materials for biosensors, biomaterials, and flexible electronics applications.
Collapse
Affiliation(s)
- Luis R. Torres-Ferrer
- Nanosciences & Nanotechnology Program, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico;
| | | | | | - Maria J. Rivas-Arreola
- Department of Sciences & Engineering, Universidad Iberoamericana, San Andrés Cholula 72820, Mexico;
| | - Marisa Moreno-Ríos
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Erika O. Ávila-Dávila
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Evgeny Prokhorov
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Yuriy Kovalenko
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Diana G. Zárate-Triviño
- Immunology and virology Laboratory, Universidad Autónoma de Nuevo León, Monterrey 64450, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Javier R. Revilla-Vazquez
- Department of Engineering & Technology, Division of Chemical Sciences, FES-Cuautitlan, Universidad Nacional Autónoma de Mexico, Cuatitlan Izcalli 54740, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Marco A. Meraz-Rios
- Department of Molecular Biomedicine, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Gabriel Luna-Barcenas
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| |
Collapse
|
4
|
Relaxation Phenomena in Chitosan-Au Nanoparticle Thin Films. Polymers (Basel) 2021; 13:polym13193214. [PMID: 34641030 PMCID: PMC8512657 DOI: 10.3390/polym13193214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Chitosan–gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.
Collapse
|
5
|
Zhao X, Wei L, Pang G, Xie J. A Novel GABA
B
R1a Receptor Electrochemical Biosensor Based on Gold Nanoparticles Chitosan‐horseradish Peroxidase. ELECTROANAL 2021. [DOI: 10.1002/elan.202060594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaotong Zhao
- Biotechnology & food Science College Tianjin University of Commerce Tianjin 300134 PR China
| | - Lihui Wei
- Biotechnology & food Science College Tianjin University of Commerce Tianjin 300134 PR China
| | - Guangchang Pang
- Biotechnology & food Science College Tianjin University of Commerce Tianjin 300134 PR China
| | - Junbo Xie
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin 301617 PR China
| |
Collapse
|
6
|
Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 2018; 110:110-123. [DOI: 10.1016/j.ijbiomac.2018.01.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022]
|
7
|
Zhang Q, Chen X, Tu F, Yao C. Ultrasensitive enzyme-free electrochemical immunoassay for free thyroxine based on three dimensionally ordered macroporous chitosan–Au nanoparticles hybrid film. Biosens Bioelectron 2014; 59:377-83. [DOI: 10.1016/j.bios.2014.03.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
8
|
Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:314-20. [PMID: 24582254 DOI: 10.1016/j.msec.2014.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 11/23/2022]
Abstract
The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate-gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01-0.08μg mL(-1)) with sensitivity of 0.26μAμg mL(-1). The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035μg mL(-1) and 0.0036μg mL(-1) in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis.
Collapse
|
9
|
MansouriMajd S, Teymourian H, Salimi A, Hallaj R. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Suginta W, Khunkaewla P, Schulte A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem Rev 2013; 113:5458-79. [DOI: 10.1021/cr300325r] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wipa Suginta
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Panida Khunkaewla
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Albert Schulte
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| |
Collapse
|
11
|
Huang KJ, Li J, Wu YY, Liu YM. Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform. Bioelectrochemistry 2013; 90:18-23. [DOI: 10.1016/j.bioelechem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023]
|
12
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2842] [Impact Index Per Article: 218.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Cavalcanti I, Silva B, Peres N, Moura P, Sotomayor M, Guedes M, Dutra R. A disposable chitosan-modified carbon fiber electrode for dengue virus envelope protein detection. Talanta 2012; 91:41-6. [DOI: 10.1016/j.talanta.2012.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 12/24/2011] [Accepted: 01/01/2012] [Indexed: 01/10/2023]
|
14
|
Gao X, Zhang Y, Wu Q, Chen H, Chen Z, Lin X. One step electrochemically deposited nanocomposite film of chitosan–carbon nanotubes–gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta 2011; 85:1980-5. [DOI: 10.1016/j.talanta.2011.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|