1
|
Reshma CS, Remya S, Bindu J. A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application. Int J Biol Macromol 2024; 283:137905. [PMID: 39577526 DOI: 10.1016/j.ijbiomac.2024.137905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.
Collapse
Affiliation(s)
- C S Reshma
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies Panangad, Kerala, 682506, India; Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India
| | - S Remya
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| | - J Bindu
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Fungal–Lactobacteria Consortia and Enzymatic Catalysis for Polylactic Acid Production. J Fungi (Basel) 2023; 9:jof9030342. [PMID: 36983510 PMCID: PMC10059961 DOI: 10.3390/jof9030342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polylactic acid (PLA) is the main biobased plastic manufactured on an industrial scale. This polymer is synthetized by chemical methods, and there is a strong demand for the implementation of clean technologies. This work focuses on the microbial fermentation of agro-industrial waste rich in starch for the production of lactic acid (LA) in a consolidated bioprocess, followed by the enzymatic synthesis of PLA. Lactic acid bacteria (LAB) and the fungus Rhizopus oryzae were evaluated as natural LA producers in pure cultures or in fungal–lactobacteria co-cultures formed by an LAB and a fungus selected for its metabolic capacity to degrade starch and to form consortia with LAB. Microbial interaction was analyzed by scanning electron microscopy and biofilm production was quantified. The results show that the fungus Talaromyces amestolkiae and Lactiplantibacillus plantarum M9MG6-B2 establish a cooperative relationship to exploit the sugars from polysaccharides provided as carbon sources. Addition of the quorum sensing molecule dodecanol induced LA metabolism of the consortium and resulted in improved cooperation, producing 99% of the maximum theoretical yield of LA production from glucose and 65% from starch. Finally, l-PLA oligomers (up to 19-LA units) and polymers (greater than 5 kDa) were synthetized by LA polycondensation and enzymatic ring-opening polymerization catalyzed by the non-commercial lipase OPEr, naturally produced by the fungus Ophiostoma piceae.
Collapse
|
5
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
7
|
Curie CA, Darmawan MA, Dianursanti D, Budhijanto W, Gozan M. The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase. Polymers (Basel) 2022; 14:polym14183856. [PMID: 36146005 PMCID: PMC9505578 DOI: 10.3390/polym14183856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022] Open
Abstract
Contradictions have been reported on the effect of organic solvents, especially toluene, on enzymatic ring-opening polymerization (eROP) of L-lactide. Studies have shown that log P, a common measure of hydrophilicity, affects enzyme activity. This study examines the effect of solvents with various log P values on the eROP of L-lactide, performed using Candida rugosa lipase (CRL). N,N-dimethylacetamide (DMA), 1,2-dimethoxybenzene, 1,4-dimethoxybenzene, diphenyl ether, and dodecane were used as the organic solvents. The eROP in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was also conducted to compare its performance with the organic solvents. The results show that [BMIM][PF6]-mediated eROP gave better conversion and molecular weight than the organic solvent-mediated eROP. In this study, the effects of solvents hydrophilicity are discussed, including the possibility of hexafluorophosphate ion ([PF6]−) hydrolysis to occur.
Collapse
Affiliation(s)
- Catia Angli Curie
- Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Department of Chemical Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Muhammad Arif Darmawan
- Research Center for Process and Manufacturing Industry Technology, Research Organization for Energy and Manufacture, National Research and Innovation Agency, South Tangerang 15314, Indonesia
| | - Dianursanti Dianursanti
- Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Wiratni Budhijanto
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Misri Gozan
- Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Correspondence: ; Tel.: +62-21-7863516
| |
Collapse
|
8
|
Bonné R, Wouters K, Lustermans JJM, Manca JV. Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Front Microbiol 2022; 13:906363. [PMID: 35794922 PMCID: PMC9252516 DOI: 10.3389/fmicb.2022.906363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
The global production of unrecycled electronic waste is extensively growing each year, urging the search for alternatives in biodegradable electronic materials. Electroactive bacteria and their nanowires have emerged as a new route toward electronic biological materials (e-biologics). Recent studies on electron transport in cable bacteria—filamentous, multicellular electroactive bacteria—showed centimeter long electron transport in an organized conductive fiber structure with high conductivities and remarkable intrinsic electrical properties. In this work we give a brief overview of the recent advances in biodegradable electronics with a focus on the use of biomaterials and electroactive bacteria, and with special attention for cable bacteria. We investigate the potential of cable bacteria in this field, as we compare the intrinsic electrical properties of cable bacteria to organic and inorganic electronic materials. Based on their intrinsic electrical properties, we show cable bacteria filaments to have great potential as for instance interconnects and transistor channels in a new generation of bioelectronics. Together with other biomaterials and electroactive bacteria they open electrifying routes toward a new generation of biodegradable electronics.
Collapse
Affiliation(s)
- Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Robin Bonné,
| | | | - Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
9
|
de Albuquerque TL, Marques Júnior JE, de Queiroz LP, Ricardo ADS, Rocha MVP. Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 2021; 186:933-951. [PMID: 34273343 DOI: 10.1016/j.ijbiomac.2021.07.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
Polylactic acid (PLA) has been highlighted as an important polymer due to its high potential for applicability in various areas, such as in the chemical, medical, pharmaceutical or biotechnology field. Very recently, studies have reported its use as a basic component for the production of personal protective equipment (PPE) required for the prevention of Sars-Cov-2 contamination, responsible for the cause of coronavirus disease, which is currently a major worldwide sanitary and social problem. PLA is considered a non-toxic, biodegradable and compostable plastic with interesting characteristics from the industrial point of view, and it emerges as a promising product under the concept of "green plastic", since most of the polymers produced currently are petroleum-based, a non-renewable raw material. Biotechnology routes have been mentioned as potential methodologies for the production of this polymer, especially by enzymatic routes, in particular by use of lipases enzymes. The availability of pure lactic acid isomers is a fundamental aspect of the manufacture of PLA with more interesting mechanical and thermal properties. Due to the technological importance that PLA-based polymers are acquiring, as well as their characteristics and applicability in several fields, especially medical, pharmaceutical and biotechnology, this review article sought to gather very recent information regarding the development of research in this area. The main highlight of this study is that it was carried out from a biotechnological point of view, aiming at a totally green bioplastic production, since the obtaining of lactic acid, which will be used as raw material for the PLA synthesis, until the degradation of the polymer obtained by biological routes.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - José Edvan Marques Júnior
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Lívia Pinheiro de Queiroz
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Anderson Diógenes Souza Ricardo
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Maria Valderez Ponte Rocha
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
10
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020; 25:E5023. [PMID: 33138232 PMCID: PMC7662581 DOI: 10.3390/molecules25215023] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, with the development of science and technology, the field of biomedicine has rapidly developed, especially with respect to biomedical materials. Low toxicity and good biocompatibility have always been key targets in the development and application of biomedical materials. As a degradable and environmentally friendly polymer, polylactic acid, also known as polylactide, is favored by researchers and has been used as a commercial material in various studies. Lactic acid, as a synthetic raw material of polylactic acid, can only be obtained by sugar fermentation. Good biocompatibility and biodegradability have led it to be approved by the U.S. Food and Drug Administration (FDA) as a biomedical material. Polylactic acid has good physical properties, and its modification can optimize its properties to a certain extent. Polylactic acid blocks and blends play significant roles in drug delivery, implants, and tissue engineering to great effect. This article describes the synthesis of polylactic acid (PLA) and its raw materials, physical properties, degradation, modification, and applications in the field of biomedicine. It aims to contribute to the important knowledge and development of PLA in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| |
Collapse
|
12
|
Elgharbawy AA, Moniruzzaman M, Goto M. Recent advances of enzymatic reactions in ionic liquids: Part II. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107426] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3524-3539. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system is known as a crucial part of the body and derangement in this system can cause potentially lethal consequences or serious side effects. Unfortunately, the nervous system is unable to rehabilitate damaged regions following seriously debilitating disorders such as stroke, spinal cord injury and brain trauma which, in turn, lead to the reduction of quality of life for the patient. Major challenges in restoring the damaged nervous system are low regenerative capacity and the complexity of physiology system. Synthetic polymeric biomaterials with outstanding properties such as excellent biocompatibility and non-immunogenicity find a wide range of applications in biomedical fields especially neural implants and nerve tissue engineering scaffolds. Despite these advancements, tailoring polymeric biomaterials for design of a desired scaffold is fundamental issue that needs tremendous attention to promote the therapeutic benefits and minimize adverse effects. This review aims to (i) describe the nervous system and related injuries. Then, (ii) nerve tissue engineering strategies are discussed and (iii) physiochemical properties of synthetic polymeric biomaterials systematically highlighted. Moreover, tailoring synthetic polymeric biomaterials for nerve tissue engineering is reviewed.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science , Tehran , Iran
| | - Hanif Kazerooni
- Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute , Tehran , Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
14
|
Engel J, Cordellier A, Huang L, Kara S. Enzymatic Ring‐Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem 2019. [DOI: 10.1002/cctc.201900976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Alex Cordellier
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Lei Huang
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| |
Collapse
|
15
|
Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 2019; 127:1612-1626. [PMID: 31021482 DOI: 10.1111/jam.14290] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed.
Collapse
Affiliation(s)
- M S Singhvi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - S S Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - D V Gokhale
- CSIR-National Chemical Laboratory, NCIM Resource Centre, Pune, India
| |
Collapse
|
16
|
Li W, Sun Q, Mu B, Luo G, Xu H, Yang Y. Poly(l-lactic acid) bio-composites reinforced by oligo(d-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int J Biol Macromol 2019; 131:495-504. [DOI: 10.1016/j.ijbiomac.2019.03.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
|
17
|
Abstract
Aliphatic polyesters are thermoplastic and biodegradable polymers with promising potentials to substitute synthetic polymers derived from petrochemicals. In particular, polylactides (PLAs) and other polylactones can be renewable and biocompatible. A more benign approach for polyester synthesis is the enzymatic polycondensation or ring-opening polymerization (ROP) reactions, whose outcomes largely depend on the reaction conditions including solvents, water content and temperature. This chapter illustrates several examples of enzymatic polymerization to polyesters using various solvents (i.e., organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems). Hydrophobic solvents containing little water tend to promote the enzymatic polymerization and lead to high molecular masses of polyesters. Since some enzymatic polymerization reactions are performed at high temperatures (such as ring-opening polymerization of lactide at >100°C), these processes demand solvents with high boiling points (such as many ionic liquids). Supercritical fluids (such as supercritical CO2) can be "green" solvents, but their compatibility with enzymes and their practicability of scaling up remain as challenges. On the other hand, ionic liquids can be tailored to be compatible with enzymes and to have high thermal stability although the studies of their uses in enzymatic polycondensation and ROP reactions are still at an early stage.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, United States.
| |
Collapse
|
18
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
19
|
Zhao H. Enzymatic Ring-Opening Polymerization (ROP) of Polylactones: Roles of Non-Aqueous Solvents. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:9-19. [PMID: 31929672 PMCID: PMC6953973 DOI: 10.1002/jctb.5444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/17/2017] [Indexed: 06/10/2023]
Abstract
Aliphatic polyesters such as polylactides (PLAs) and other polylactones are thermoplastic, renewable and biocompatible polymers with high potentials to replace petro-chemical-based synthetic polymers. A benign route for synthesizing these polyesters is through the enzyme-catalyzed ring-opening polymerization (ROP) reaction; this type of enzymatic process is very sensitive to reaction conditions such as solvents, water content and temperature. This review systematically discusses the crucial roles of different solvents (such as solvent-free or in bulk, organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems) on the degree of polymerization and polydispersity. In general, many studies suggest that hydrophobic organic solvents with minimum water contents lead to efficient enzymatic polymerization and subsequently high molecular weights of polyesters; the selection of solvents is also limited by the reaction temperature, e.g. the ROP of lactide is often conducted at above 100 °C, therefore, the solvent typically needs to have its boiling point above this temperature. The use of supercritical fluids could be limited by its scaling-up potential, while ionic liquids have exhibited many advantages include their low-volatility, high thermal stability, controllable enzyme-compatibility, and a wide range of choices. However, the fundamental and mechanistic understanding of the specific roles of ionic liquids in enzymatic ROP reactions is still lacking. Furthermore, the lipase specificity towards l- and d-lactide is also surveyed, followed by the discussion of engineered lipases with improved enantioselectivity and thermal stability. In addition, the preparation of polyester-derived materials such as polyester-grafted cellulose by the enzymatic ROP method is briefly reviewed.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
20
|
Characterization of Aliphatic Polyesters Synthesized via Enzymatic Ring-Opening Polymerization in Ionic Liquids. Molecules 2017; 22:molecules22060923. [PMID: 28574463 PMCID: PMC6152688 DOI: 10.3390/molecules22060923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of ionic liquids (ILs) on the microstructural features of aliphatic polyesters for biomedical applications, a series of copolymers were synthesized by lipase ring opening polymerization of rac-lactide (rac-LA) and ε-caprolactone (CL). The chemical structures of resulting polymers were characterized by 1H- and 13C-NMR and the average molecular weight (Mn) and dispersity index were characterized by gel permeation chromatography. The structure of the copolymers confirms the presence of linear polymer chains with end-functional hydroxyl groups allowing covalent coupling of the therapeutic agents. Chain microstructure of copolymers indicates the presence of both random and block copolymers depending on the synthesis conditions. Moreover, it was found that CL is the most active co-monomer during copolymerization which enhances the polymerizability of rac-LA and allows to obtain higher Mn of the copolymers. The results demonstrate that ILs could be promising solvents in synthesis of aliphatic esters for biomedical applications.
Collapse
|
21
|
Zhao H, Nathaniel GA, Merenini PC. Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv 2017. [DOI: 10.1039/c7ra09038b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Certain organic solvents and ionic liquids could promote the enzymatic ring-opening polymerization of lactide.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
- Department of Chemistry and Forensic Science
| | | | - Princess C. Merenini
- Department of Chemistry and Forensic Science
- Savannah State University
- Savannah
- USA
| |
Collapse
|
22
|
Saini P, Arora M, Kumar MR. Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 2016; 107:47-59. [PMID: 27374458 DOI: 10.1016/j.addr.2016.06.014] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/23/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Poly(lactic acid) (PLA) has become a "material of choice" in biomedical applications for its ability to fulfill complex needs that typically include properties such as biocompatibility, biodegradability, mechanical strength, and processability. Despite the advantages of pure PLA in a wider spectrum of applications, it is limited by its hydrophobicity, low impact toughness, and slow degradation rate. Blending PLA with other polymers offers a convenient option to enhance its properties or generate novel properties for target applications without the need to develop new materials. PLA blends with different natural and synthetic polymers have been developed by solvent and melt blending techniques and further processed based on end-use applications. A variety of PLA blends has been explored for biomedical applications such as drug delivery, implants, sutures, and tissue engineering. This review discusses the opportunities for PLA blends in the biomedical arena, including the overview of blending and postblend processing techniques and the applications of PLA blends currently in use and under development.
Collapse
|
23
|
Piotrowska U, Sobczak M, Oledzka E, Combes C. Effect of ionic liquids on the structural, thermal, andin vitrodegradation properties of poly(ε-caprolactone) synthesized in the presence ofCandida antarcticalipase B. J Appl Polym Sci 2016. [DOI: 10.1002/app.43728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw; Banacha 1 Warsaw 02-097 Poland
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw; Banacha 1 Warsaw 02-097 Poland
- Chair of Chemistry; Department of Organic Chemistry; Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom; Chrobrego 27 Radom 26-600 Poland
| | - Ewa Oledzka
- Department of Inorganic and Analytical Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw; Banacha 1 Warsaw 02-097 Poland
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, CS 44362; 31030 Toulouse cedex 4 France
| |
Collapse
|
24
|
Mena M, Shirai K, Tecante A, Bárzana E, Gimeno M. Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a–ionic liquid media. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Sun F, Luo X, Kang L, Peng X, Lu C. Synthesis of hyperbranched polymers and their applications in analytical chemistry. Polym Chem 2015. [DOI: 10.1039/c4py01462f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses primarily on the recent developments in the synthesis of hyperbranched polymers and their application in analytical chemistry.
Collapse
Affiliation(s)
- Fengxia Sun
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiaoling Luo
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Lichao Kang
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiayu Peng
- Key Laboratories of Sheep Breeding and Reproduce
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
| | - Chunxia Lu
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| |
Collapse
|
26
|
Piotrowska U, Sobczak M. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems. Molecules 2014; 20:1-23. [PMID: 25546617 PMCID: PMC6272625 DOI: 10.3390/molecules20010001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Biodegradable or bioresorbable polymers are commonly used in various pharmaceutical fields (e.g., as drug delivery systems, therapeutic systems or macromolecular drug conjugates). Polyesters are an important class of polymers widely utilized in pharmacy due to their biodegradability and biocompatibility features. In recent years, there has been increased interest in enzyme-catalyzed ring-opening polymerization (e-ROP) of cyclic esters as an alternative method of preparation of biodegradable or bioresorbable polymers. Ionic liquids (ILs) have been presented as green solvents in enzymatic ring-opening polymerization. The activity, stability, selectivity of enzymes in ILs and the ability to catalyze polyester synthesis under these conditions are discussed. Overall, the review demonstrates that e-ROP of lactones or lactides could be an effective method for the synthesis of useful biomedical polymers.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| |
Collapse
|
27
|
Pavelkova A, Kucharczyk P, Stloukal P, Koutny M, Sedlarik V. Novel poly(lactic acid)-poly(ethylene oxide) chain-linked copolymer and its application in nano-encapsulation. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alena Pavelkova
- Polymer Centre, Faculty of Technology; Tomas Bata University in Zlin; nam. T.G.Masaryka 275 76272 Zlín Czech Republic
- Centre of Polymer Systems; University Institute, Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| | - Pavel Kucharczyk
- Polymer Centre, Faculty of Technology; Tomas Bata University in Zlin; nam. T.G.Masaryka 275 76272 Zlín Czech Republic
- Centre of Polymer Systems; University Institute, Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| | - Petr Stloukal
- Centre of Polymer Systems; University Institute, Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
- Department of Environmental Protection Engineering, Faculty of Technology; Tomas Bata University in Zlin; nam. T.G.Masaryka 275 762 72 Zlin Czech Republic
| | - Marek Koutny
- Centre of Polymer Systems; University Institute, Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
- Department of Environmental Protection Engineering, Faculty of Technology; Tomas Bata University in Zlin; nam. T.G.Masaryka 275 762 72 Zlin Czech Republic
| | - Vladimir Sedlarik
- Polymer Centre, Faculty of Technology; Tomas Bata University in Zlin; nam. T.G.Masaryka 275 76272 Zlín Czech Republic
- Centre of Polymer Systems; University Institute, Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| |
Collapse
|
28
|
Nduko JM, Matsumoto K, Ooi T, Taguchi S. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol 2013; 98:2453-60. [PMID: 24337250 DOI: 10.1007/s00253-013-5401-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
Abstract
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA + Δdld) and their parent strain, BW25113, were grown on 20 g l(-1) xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58-66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA + Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA + gatC strain achieved a productivity of 8.3 g l(-1), which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l(-1) xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l(-1). On the other hand, the ΔpflA + Δdld strain grown on 30 g l(-1) xylose synthesized 6.4 g l(-1) P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000-114,000.
Collapse
Affiliation(s)
- John Masani Nduko
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | | | | | | |
Collapse
|
29
|
LIU GUILI, ZHONG RUIBO, HU RUISHENG, ZHANG FENG. APPLICATIONS OF IONIC LIQUIDS IN BIOMEDICINE. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s179304801230006x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
(Ionic liquids) ILs have unique properties compared with conventional solvents, opening a wide range of application as solvents and catalysts. ILs' cytotoxicity extend their application in biomedicine by acting as antimicrobial and anticancer agents. This article reviews the current research advances of ILs' biomedical application from the following four aspects: solvents, catalysts, antimicrobial and anticancer agents. By introducing ILs' interesting structures and their corresponding unique properties, this review concludes the current state-of-art of ILs biomedical applications. We also try to point out the ILs issues and solutions for more potential applications in biomedicine.
Collapse
Affiliation(s)
- GUILI LIU
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - RUIBO ZHONG
- Biology School, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - RUISHENG HU
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - FENG ZHANG
- Biology School, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
30
|
YOSHIZAWA-FUJITA M, KAKEGAWARA Y, TAKEOKA Y, RIKUKAWA M. Lipase-Catalyzed Ring-Opening Polymerization of L-Lactide in Hydrated Ionic Liquids. KOBUNSHI RONBUNSHU 2013. [DOI: 10.1295/koron.70.612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Guzmán-Lagunes F, López-Luna A, Gimeno M, Bárzana E. Enzymatic synthesis of poly-l-lactide in supercritical R134a. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Mena M, López-Luna A, Shirai K, Tecante A, Gimeno M, Bárzana E. Lipase-catalyzed synthesis of hyperbranched poly-l-lactide in an ionic liquid. Bioprocess Biosyst Eng 2012; 36:383-7. [DOI: 10.1007/s00449-012-0792-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
33
|
Dou J, Liu Z, Mahmood K, Zhao Y. Synthesis of poly(ethylene terephthalate) in benzyl imidazolium ionic liquids. POLYM INT 2012. [DOI: 10.1002/pi.4237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
|
35
|
Yang Y, Yu Y, Zhang Y, Liu C, Shi W, Li Q. Lipase/esterase-catalyzed ring-opening polymerization: A green polyester synthesis technique. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
|
37
|
Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv 2011; 30:321-8. [PMID: 21756992 DOI: 10.1016/j.biotechadv.2011.06.019] [Citation(s) in RCA: 593] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
Bioabsorbable polymers are considered a suitable alternative to the improvement and development of numerous applications in medicine. Poly-lactic acid (PLA,) is one of the most promising biopolymers due to the fact that the monomers may produced from non toxic renewable feedstock as well as is naturally occurring organic acid. Lactic acid can be made by fermentation of sugars obtained from renewable resources as such sugarcane. Therefore, PLA is an eco-friendly product with better features for use in the human body (nontoxicity). Lactic acid polymers can be synthesized by different processes so as to obtain products with an ample variety of chemical and mechanical properties. Due to their excellent biocompatibility and mechanical properties, PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues. In order to maximize the benefits of its use, it is necessary to understand the relationship between PLA material properties, the manufacturing process and the final product with desired characteristics. In this paper, the lactic acid production by fermentation and the polymer synthesis such biomaterial are reviewed. The paper intends to contribute to the critical knowledge and development of suitable use of PLA for biomedical applications.
Collapse
|
38
|
Electrochemical determination of ferrocene diffusion coefficient in [C6MIM][PF6]–CO2 biphasic system. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Mena M, Chanfreau S, Gimeno M, Bárzana E. Enzymatic synthesis of poly-l-lactide-co-glycolide in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Bioprocess Biosyst Eng 2010; 33:1095-101. [DOI: 10.1007/s00449-010-0435-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/04/2010] [Indexed: 11/30/2022]
|