1
|
Dziurzyński M, Nowak ME, Furman M, Okrasińska A, Pawłowska J, Fondi M. Insights into optimization of oleaginous fungi - genome-scale metabolic reconstruction and analysis of Umbelopsis sp. WA50703. Comput Struct Biotechnol J 2025; 27:1431-1439. [PMID: 40242294 PMCID: PMC12002602 DOI: 10.1016/j.csbj.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Oleaginous fungi-known for their high lipid content of up to 80 % of dry mass-are of significant interest for biotechnological applications, particularly in biofuel and fatty acid production. Among these, the genus Umbelopsis, a common soil saprotroph of the Mucoromycota phylum, stands out for its rapid growth, low nutritional requirements, and ability to produce substantial amounts of lipids, especially polyunsaturated fatty acids (PUFAs). Despite previous studies on lipid production in Umbelopsis, metabolic engineering has been underexplored. This study fills that gap by presenting the first comprehensive metabolic model for Umbelopsis sp. WA50703, encompassing 2418 metabolites, 2215 reactions, and 1627 genes (iUmbe1). The model demonstrated a strong predictive accuracy correctly predicting metabolic capabilities in 81.05 % of cases when evaluated against experimental data. The Flux Scanning based on Enforced Objective Flux (FSEOF) algorithm was utilized to identify gene targets for enhancing lipid production. This analysis revealed 33 genes associated with 23 metabolic reactions relevant to lipid biosynthesis. Notably, the reactions catalysed by acetyl-CoA carboxylase and carbonic anhydrase emerged as prime candidates for up-regulation. These findings provide clear guidelines for future metabolic engineering efforts to optimize PUFA production in Umbelopsis strains.
Collapse
Affiliation(s)
- Mikołaj Dziurzyński
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Maksymilian E. Nowak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Maria Furman
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
2
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
3
|
Wannawilai S, Jeennor S, Khongto B, Laoteng K. Exploring differential traits of lipid-producing stages of the wild type and morphologically engineered strain of Aspergillus oryzae by comparative kinetic modeling. World J Microbiol Biotechnol 2020; 36:183. [DOI: 10.1007/s11274-020-02959-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
|
4
|
Diamantopoulou P, Stoforos NG, Xenopoulos E, Sarris D, Psarianos D, Philippoussis A, Papanikolaou S. Lipid production by Cryptococcus curvatus growing on commercial xylose and subsequent valorization of fermentation waste-waters for the production of edible and medicinal mushrooms. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Behera AR, Dutta K, Verma P, Daverey A, Sahoo DK. High lipid accumulating bacteria isolated from dairy effluent scum grown on dairy wastewater as potential biodiesel feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109686. [PMID: 31606715 DOI: 10.1016/j.jenvman.2019.109686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The study evaluated the lipid accumulation potential of bacteria isolated from dairy effluent scum by the valorization of dairy wastewater as a renewable feedstock for biodiesel production. Three oleaginous bacteria (i.e. DS-1, DS-6, and DS-7) were screened on the basis of their lipid accumulation (>20% lipid content) and productivity on a glucose-based medium. The effect of different carbon sources (i.e. lactose, sucrose, starch, glucose, and xylose) on lipid accumulation capacity of the bacterial isolates was evaluated. The rod-shaped oleaginous bacterium DS-7 could accumulate 90% lipid with 1.2 g/l·d lipid productivity using lactose as a sole source of carbon. The bacteria could efficiently utilize dairy wastewater (~50% reduction in BOD) with reasonably high lipid accumulation (72.78%), biomass production (4.29 g/l) and lipid productivity (0.727 g/l·d). The lipids accumulated by bacterium DS-7 were mostly neutral lipids and contained fatty acids of chain length C14:0-C18:0, as confirmed by nile red staining and nuclear magnetic resonance (NMR) spectroscopy. Fourier-transform infrared (FTIR) spectroscopy and gas chromatography (GC) analysis of fatty acid methyl esters (FAME) revealed that transesterified bacterial lipids from the isolated bacteria DS-7 are suitable for biodiesel applications.
Collapse
Affiliation(s)
- Ashis Ranjan Behera
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Priyanka Verma
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India
| | | |
Collapse
|
6
|
Karamerou EE, Webb C. Cultivation modes for microbial oil production using oleaginous yeasts – A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J Microbiol Biotechnol 2019; 35:63. [PMID: 30923965 DOI: 10.1007/s11274-019-2631-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
The last years a constantly rising number of publications have appeared in the literature in relation to the production of oils and fats deriving from microbial sources (the "single cell oils"-SCOs). SCOs can be used as precursors for the synthesis of lipid-based biofuels or employed as substitutes of expensive oils rarely found in the plant or animal kingdom. In the present review-article, aspects concerning SCOs (economics, biochemistry, substrates, technology, scale-up), with emphasis on the potential of Mortierella isabellina were presented. Fats and hydrophilic substrates have been used as carbon sources for cultivating Zygomycetes. Among them, wild-type M. isabellina strains have been reported as excellent SCO-producers, with conversion yields on sugar consumed and lipid in DCW values reported comparable to the maximum ones achieved for genetically engineered SCO-producing strains. Lipids produced on glucose contain γ-linolenic acid (GLA), a polyunsaturated fatty acid (PUFA) of high dietary and pharmaceutical importance, though in low concentrations. Nevertheless, due to their abundance in oleic acid, these lipids are perfect precursors for the synthesis of 2nd generation biodiesel, while GLA can be recovered and directed to other usages. Genetic engineering focusing on over-expression of Δ6 and Δ12 desaturases and of C16 elongase may improve the fatty acid composition (viz. increasing the concentration of GLA or other nutritionally important PUFAs) of these lipids.
Collapse
|
8
|
Chan LG, Cohen JL, Ozturk G, Hennebelle M, Taha AY, L. N. de Moura Bell JM. Bioconversion of cheese whey permeate into fungal oil by Mucor circinelloides. J Biol Eng 2018; 12:25. [PMID: 30473730 PMCID: PMC6237013 DOI: 10.1186/s13036-018-0116-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Oleaginous fungi are efficient tools to convert agricultural waste streams into valuable components. The filamentous fungus Mucor circinelloides was cultivated in whey permeate, a byproduct from cheese production, to produce an oil-rich fungal biomass. Response surface methodology was used to optimize the fermentation conditions such as pH and temperature for increased biomass yield and lipid accumulation. Quantification and characterization of the fungal biomass oil was conducted. RESULTS Upstream lactose hydrolysis of the whey permeate increased the biomass yield from 2.4 to 7.8 (g dry biomass/L) compared to that of non-hydrolyzed whey permeate. The combination of low pH (4.5) and pasteurization minimized microbial competition, thus favoring fungal growth. A central composite rotatable design was used to evaluate the effects of temperature (22.4-33.6 °C) and a lower pH range (3.6-4.7) on biomass yield and composition. The highest biomass yield and oil content was observed at high temperature (33.6 °C), while the pH range evaluated had a less pronounced effect. The predictive model was validated at the optimal conditions of 33.6 °C and pH 4.5. The fungal biomass yield plateaued at 9 g dry cell weight per liter, while the oil content and lipid yield reached a maximum of 24% dry biomass and 2.20 g/L, respectively, at 168 h. Triacylglycerides were the major lipid class (92%), which contained predominantly oleic (41%), palmitic (23%), linoleic (11%), and γ-linolenic acid (9%). CONCLUSIONS This study provided an alternative way of valorization of cheese whey permeate by using it as a substrate for the production of value-added compounds by fungal fermentation. The fatty acid profile indicates the suitability of M. circinelloides oil as a potential feedstock for biofuel production and nutraceutical applications.
Collapse
Affiliation(s)
- Lauryn G. Chan
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Joshua L. Cohen
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Marie Hennebelle
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Juliana Maria L. N. de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
- Department of Biological and Agricultural Engineering, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
9
|
Robles-Rodríguez CE, Muñoz-Tamayo R, Bideaux C, Gorret N, Guillouet SE, Molina-Jouve C, Roux G, Aceves-Lara CA. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions. Biotechnol Bioeng 2018; 115:1137-1151. [PMID: 29288574 DOI: 10.1002/bit.26537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/18/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023]
Abstract
Oleaginous yeasts have been seen as a feasible alternative to produce the precursors of biodiesel due to their capacity to accumulate lipids as triacylglycerol having profiles with high content of unsaturated fatty acids. The yeast Yarrowia lipolytica is a promising microorganism that can produce lipids under nitrogen depletion conditions and excess of the carbon source. However, under these conditions, this yeast also produces citric acid (overflow metabolism) decreasing lipid productivity. This work presents two mathematical models for lipid production by Y. lipolytica from glucose. The first model is based on Monod and inhibition kinetics, and the second one is based on the Droop quota model approach, which is extended to yeast. The two models showed good agreements with the experimental data used for calibration and validation. The quota based model presented a better description of the dynamics of nitrogen and glucose dynamics leading to a good management of N/C ratio which makes this model interesting for control purposes. Then, quota model was used to evaluate, by means of simulation, a scenario for optimizing lipid productivity and lipid content. For that, a control strategy was designed by approximating the flow rates of glucose and nitrogen with piecewise linear functions. Simulation results achieved productivity of 0.95 g L-1 hr-1 and lipid content fraction of 0.23 g g-1 , which indicates that this strategy is a promising alternative for the optimization of lipid production.
Collapse
Affiliation(s)
| | | | - Carine Bideaux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Nathalie Gorret
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Gilles Roux
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
10
|
Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu S, Sarris D, Philippoussis A, Papanikolaou S. Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 2018; 124:336-367. [DOI: 10.1111/jam.13633] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- M. Athenaki
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - C. Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - P. Diamantopoulou
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S.S. Tchakouteu
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - D. Sarris
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - A. Philippoussis
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| |
Collapse
|
11
|
Single Cell Oils (SCOs) of Oleaginous Filamentous Fungi as a Renewable Feedstock: A Biodiesel Biorefinery Approach. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Gardeli C, Athenaki M, Xenopoulos E, Mallouchos A, Koutinas AA, Aggelis G, Papanikolaou S. Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Microbiol 2017; 123:1461-1477. [PMID: 28921786 DOI: 10.1111/jam.13587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
AIMS To study and characterize the lipids produced by Mortierella (Umbelopsis) isabellina, during its growth on mixtures of glucose and xylose. METHODS AND RESULTS Glucose and xylose were utilized as carbon sources, solely or in blends, under nitrogen-limited conditions, in batch-flask trials (initial sugars at 80 g l-1 ). Significant lipid production (maximum lipid 17·8 g l-1 ; lipid in DCW 61·0% w/w; lipid on glucose consumed 0·23 g g-1 ) occurred on glucose employed solely, while xylose concentration in the growth medium was conversely correlated with lipid accumulation. With increasing xylose concentrations into the blend, lipid storage decreased while xylitol in significant concentrations (up to 24 g l-1 ) was produced. Irrespective of the sugar blend employed, significant quantities of endopolysaccharides were detected in the first growth steps (in the presence of nitrogen into the medium or barely after its disappearance) while lipids were stored thereafter. Neutral lipids, mainly composed of triacylglycerols, were the main microbial lipid fraction. Phospholipids were quantified both through fractionation and subsequent gravimetric determination and also through determination of phosphorus, and it seemed that the second method was more accurate. Phospholipids were mainly composed of phosphatidylcholine and another nonidentified compound presumably being phosphatidyldimethylethanolamine. CONCLUSIONS Mortierella isabellina is suitable to convert lignocellulosic sugars into lipids. SIGNIFICANCE AND IMPACT OF THE STUDY Differentiations between metabolism on xylose and glucose were reported. Moreover, this is one of the first reports indicating extensive analysis of microbial lipids produced by M. isabellina.
Collapse
Affiliation(s)
- C Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - M Athenaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - E Xenopoulos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - A Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - A A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - G Aggelis
- Department of Biology, University of Patras, Patras, Greece
| | - S Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Zuñiga C, Zaramela L, Zengler K. Elucidation of complexity and prediction of interactions in microbial communities. Microb Biotechnol 2017; 10:1500-1522. [PMID: 28925555 PMCID: PMC5658597 DOI: 10.1111/1751-7915.12855] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microorganisms engage in complex interactions with other members of the microbial community, higher organisms as well as their environment. However, determining the exact nature of these interactions can be challenging due to the large number of members in these communities and the manifold of interactions they can engage in. Various omic data, such as 16S rRNA gene sequencing, shotgun metagenomics, metatranscriptomics, metaproteomics and metabolomics, have been deployed to unravel the community structure, interactions and resulting community dynamics in situ. Interpretation of these multi-omic data often requires advanced computational methods. Modelling approaches are powerful tools to integrate, contextualize and interpret experimental data, thus shedding light on the underlying processes shaping the microbiome. Here, we review current methods and approaches, both experimental and computational, to elucidate interactions in microbial communities and to predict their responses to perturbations.
Collapse
Affiliation(s)
- Cristal Zuñiga
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| | - Livia Zaramela
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| | - Karsten Zengler
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| |
Collapse
|
14
|
Robles-Rodriguez CE, Bideaux C, Guillouet SE, Gorret N, Cescut J, Uribelarrea JL, Molina-Jouve C, Roux G, Aceves-Lara CA. Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J Biotechnol 2014; 170:50-9. [DOI: 10.1016/j.jbiotec.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 11/23/2022]
|
16
|
Meeuwse P, Klok AJ, Haemers S, Tramper J, Rinzema A. Growth and lipid production of Umbelopsis isabellina on a solid substrate—Mechanistic modeling and validation. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|