1
|
Hengelbrock A, Probst F, Baukmann S, Uhl A, Tschorn N, Stitz J, Schmidt A, Strube J. Digital Twin for Continuous Production of Virus-like Particles toward Autonomous Operation. ACS OMEGA 2024; 9:34990-35013. [PMID: 39157157 PMCID: PMC11325504 DOI: 10.1021/acsomega.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Finja Probst
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Simon Baukmann
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Alexander Uhl
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Natalie Tschorn
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Jörn Stitz
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Axel Schmidt
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Jochen Strube
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| |
Collapse
|
2
|
Mendoza SN, Saa PA, Teusink B, Agosin E. Metabolic Modeling of Wine Fermentation at Genome Scale. Methods Mol Biol 2022; 2399:395-454. [PMID: 35604565 DOI: 10.1007/978-1-0716-1831-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wine fermentation is an ancient biotechnological process mediated by different microorganisms such as yeast and bacteria. Understanding of the metabolic and physiological phenomena taking place during this process can be now attained at a genome scale with the help of metabolic models. In this chapter, we present a detailed protocol for modeling wine fermentation using genome-scale metabolic models. In particular, we illustrate how metabolic fluxes can be computed, optimized and interpreted, for both yeast and bacteria under winemaking conditions. We also show how nutritional requirements can be determined and simulated using these models in relevant test cases. This chapter introduces fundamental concepts and practical steps for applying flux balance analysis in wine fermentation, and as such, it is intended for a broad microbiology audience as well as for practitioners in the metabolic modeling field.
Collapse
Affiliation(s)
| | - Pedro A Saa
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bas Teusink
- Systems Biology Lab, AIMMS, Vrije Universiteit, Amsterdam, The Netherlands
| | - Eduardo Agosin
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
|
4
|
Tesnière C, Pradal M, Legras JL. Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Res 2021; 21:6225805. [PMID: 33852000 DOI: 10.1093/femsyr/foab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Collapse
Affiliation(s)
- Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France.,CIRM-Levures, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Gil i Cortiella M, Úbeda C, Covarrubias JI, Peña-Neira Á. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Torres P, Saa PA, Albiol J, Ferrer P, Agosin E. Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris. Metab Eng Commun 2019; 9:e00103. [PMID: 31720218 PMCID: PMC6838487 DOI: 10.1016/j.mec.2019.e00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022] Open
Abstract
Pichia pastoris is recognized as a biotechnological workhorse for recombinant protein expression. The metabolic performance of this microorganism depends on genetic makeup and culture conditions, amongst which the specific growth rate and oxygenation level are critical. Despite their importance, only their individual effects have been assessed so far, and thus their combined effects and metabolic consequences still remain to be elucidated. In this work, we present a comprehensive framework for revealing high-order (i.e., individual and combined) metabolic effects of the above parameters in glucose-limited continuous cultures of P. pastoris, using thaumatin production as a case study. Specifically, we employed a rational experimental design to calculate statistically significant metabolic effects from multiple chemostat data, which were later contextualized using a refined and highly predictive genome-scale metabolic model of this yeast under the simulated conditions. Our results revealed a negative effect of the oxygenation on the specific product formation rate (thaumatin), and a positive effect on the biomass yield. Notably, we identified a novel positive combined effect of both the specific growth rate and oxygenation level on the specific product formation rate. Finally, model predictions indicated an opposite relationship between the oxygenation level and the growth-associated maintenance energy (GAME) requirement, suggesting a linear GAME decrease of 0.56 mmol ATP/gDCW per each 1% increase in oxygenation level, which translated into a 44% higher metabolic cost under low oxygenation compared to high oxygenation. Overall, this work provides a systematic framework for mapping high-order metabolic effects of different culture parameters on the performance of a microbial cell factory. Particularly in this case, it provided valuable insights about optimal operational conditions for protein production in P. pastoris.
Collapse
Affiliation(s)
- Paulina Torres
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Joan Albiol
- Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| |
Collapse
|
7
|
Sepúlveda-Gálvez A, Agustín Badillo-Corona J, Chairez I. Finite-time parametric identification for the model representing the metabolic and genetic regulatory effects of sequential aerobic respiration and anaerobic fermentation processes in Escherichia coli. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:299-317. [PMID: 28340243 DOI: 10.1093/imammb/dqx004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/20/2016] [Indexed: 11/14/2022]
Abstract
Mathematical modelling applied to biological systems allows for the inferring of changes in the dynamic behaviour of organisms associated with variations in the environment. Models based on ordinary differential equations are most commonly used because of their ability to describe the mechanisms of biological systems such as transcription. The disadvantage of using this approach is that there is a large number of parameters involved and that it is difficult to obtain them experimentally. This study presents an algorithm to obtain a finite-time parameter characterization of the model used to describe changes in the metabolic behaviour of Escherichia coli associated with environmental changes. In this scheme, super-twisting algorithm was proposed to recover the derivative of all the proteins and mRNA of E. coli associated to changes in the concentration of oxygen available in the growth media. The 75 identified parameters in this study maintain the biological coherence of the system and they were estimated with no more than 20% error with respect to the real ones included in the proposed model.
Collapse
Affiliation(s)
| | | | - Isaac Chairez
- Department of Bioprocesses, Instituto Politécnico Nacional, Mexico, Mexico
| |
Collapse
|
8
|
Effect of Different Glass Shapes and Size on the Time Course of Dissolved Oxygen in Wines during Simulated Tasting. BEVERAGES 2018. [DOI: 10.3390/beverages4010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Cerda-Drago TG, Agosin E, Pérez-Correa JR. Modelling the oxygen dissolution rate during oenological fermentation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Model-based scale-up methodology for aerobic fed-batch bioprocesses: application to polyhydroxybutyrate (PHB) production. Bioprocess Biosyst Eng 2015; 38:1179-90. [PMID: 25634439 DOI: 10.1007/s00449-015-1360-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022]
Abstract
This work presents a general model-based methodology to scale-up fed-batch bioprocesses. The idea behind this approach is to establish a dynamics hierarchy, based on a model of the process, that allows the designer to determine the proper scale factors as well as at which point of the fed-batch the process should be scaled up. Here, concepts and tools of linear control theory, such as the singular value decomposition of the Hankel matrix, are exploited in the context of process design. The proposed scale-up methodology is first described in a bioprocesses general framework highlighting its main features, key variables and parameters. Then, it is applied to a polyhydroxybutyrate (PHB) fed-batch bioreactor and compared with three empirical criteria, that are traditionally employed to determine the scale factors of these processes, showing the usefulness and distinctive features of this proposal. Moreover, this methodology provides theoretical support to a frequently used empirical rule: scale-up aerobic bioreactors at constant volumetric oxygen transfer coefficient. Finally, similar process dynamic behavior and PHB production set at the laboratory scale are predicted at the new operating scale, while it is also determined that is rarely possible to reproduce similar dynamic behavior of the bioreactor using empirical scale-up criteria.
Collapse
|
11
|
Morales P, Rojas V, Quirós M, Gonzalez R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 2015; 99:3993-4003. [PMID: 25582558 PMCID: PMC4428804 DOI: 10.1007/s00253-014-6321-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/07/2023]
Abstract
We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.
Collapse
Affiliation(s)
- Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Logroño, La Rioja, Spain,
| | | | | | | |
Collapse
|
12
|
Monitoring peroxides generation during model wine fermentation by FOX-1 assay. Food Chem 2014; 175:25-8. [PMID: 25577046 DOI: 10.1016/j.foodchem.2014.11.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022]
Abstract
The quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used. They were inoculated in batch laboratory fermentations in a model wine solution for evaluating the production of reactive oxygen species (ROS) during the yeast's alcoholic fermentation. For first time total hydroperoxides were determined by FOX-1 assay to follow ROS generation. The total hydroperoxides accumulated along the 10 days of fermentation peaked up to 10.0 μM in yeast EC1118, of which 1.3 μM was hydrogen peroxide (H2O2). The FOX-1 based analytical approach herein presented is a valuable tool for the quantification of ROS oxidative damage during winemaking.
Collapse
|
13
|
Sánchez BJ, Pérez-Correa JR, Agosin E. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Metab Eng 2014; 25:159-73. [DOI: 10.1016/j.ymben.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
|
14
|
Orellana M, Aceituno FF, Slater AW, Almonacid LI, Melo F, Agosin E. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions. FEMS Yeast Res 2014; 14:412-24. [PMID: 24387769 DOI: 10.1111/1567-1364.12135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/09/2013] [Accepted: 12/29/2013] [Indexed: 11/27/2022] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.
Collapse
Affiliation(s)
- Marcelo Orellana
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
15
|
Moenne MI, Saa P, Laurie VF, Pérez-Correa JR, Agosin E. Oxygen Incorporation and Dissolution During Industrial-Scale Red Wine Fermentations. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1257-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Moenne MI, Mouret JR, Sablayrolles JM, Agosin E, Farines V. Control of bubble-free oxygenation with silicone tubing during alcoholic fermentation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl Environ Microbiol 2012; 78:8340-52. [PMID: 23001663 DOI: 10.1128/aem.02305-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.
Collapse
|