1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Zhao H, Toe C. “Water-like” ammonium-based ionic liquids for lipase activation and enzymatic polymerization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Zhao H, Kanpadee N, Jindarat C. Ether-functionalized ionic liquids for nonaqueous biocatalysis: Effect of different cation cores. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Abstract
Aliphatic polyesters are thermoplastic and biodegradable polymers with promising potentials to substitute synthetic polymers derived from petrochemicals. In particular, polylactides (PLAs) and other polylactones can be renewable and biocompatible. A more benign approach for polyester synthesis is the enzymatic polycondensation or ring-opening polymerization (ROP) reactions, whose outcomes largely depend on the reaction conditions including solvents, water content and temperature. This chapter illustrates several examples of enzymatic polymerization to polyesters using various solvents (i.e., organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems). Hydrophobic solvents containing little water tend to promote the enzymatic polymerization and lead to high molecular masses of polyesters. Since some enzymatic polymerization reactions are performed at high temperatures (such as ring-opening polymerization of lactide at >100°C), these processes demand solvents with high boiling points (such as many ionic liquids). Supercritical fluids (such as supercritical CO2) can be "green" solvents, but their compatibility with enzymes and their practicability of scaling up remain as challenges. On the other hand, ionic liquids can be tailored to be compatible with enzymes and to have high thermal stability although the studies of their uses in enzymatic polycondensation and ROP reactions are still at an early stage.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, United States.
| |
Collapse
|
5
|
|
6
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
7
|
Liang L, Long J, Li G. Lipase-catalyzed synthesis of hyperbranched polyester improved by autocatalytic prepolymerization process. J Appl Polym Sci 2018. [DOI: 10.1002/app.47221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Liuen Liang
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Department of Physics and Astronomy; Macquarie University; Sydney NSW 2109 Australia
| | - Junyuan Long
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guangji Li
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
8
|
Yang J, Liu Y, Liang X, Yang Y, Li Q. Enantio-, Regio-, and Chemoselective Lipase-Catalyzed Polymer Synthesis. Macromol Biosci 2018; 18:e1800131. [PMID: 29870576 DOI: 10.1002/mabi.201800131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Indexed: 12/19/2022]
Abstract
In contrast to chemical routes, enzymatic polymerization possesses favorable characteristics of mild reaction conditions, few by-products, and high activity toward cyclic lactones which make it a promising technique for constructing polymeric materials. Meanwhile, it can avoid the trace residue of metallic catalysts and potential toxicity, and thus exhibits great potential in the biomedical fields. More importantly, lipase-catalyzed polymer synthesis usually shows favorable enantio-, regio-, and chemoselectivity. Here, the history and recent developments in lipase-catalyzed selective polymerization for constructing polymers with unique structures and properties are highlighted. In particular, the synthesis of polymeric materials which are difficult to prepare in a chemical route and the construction of polymers through the combination of selective enzymatic and chemical methods are focused. In addition, the future direction is proposed especially based on the rapid developments in computational chemistry and protein engineering techniques.
Collapse
Affiliation(s)
- Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| |
Collapse
|
9
|
Zhao H. Enzymatic Ring-Opening Polymerization (ROP) of Polylactones: Roles of Non-Aqueous Solvents. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:9-19. [PMID: 31929672 PMCID: PMC6953973 DOI: 10.1002/jctb.5444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/17/2017] [Indexed: 06/10/2023]
Abstract
Aliphatic polyesters such as polylactides (PLAs) and other polylactones are thermoplastic, renewable and biocompatible polymers with high potentials to replace petro-chemical-based synthetic polymers. A benign route for synthesizing these polyesters is through the enzyme-catalyzed ring-opening polymerization (ROP) reaction; this type of enzymatic process is very sensitive to reaction conditions such as solvents, water content and temperature. This review systematically discusses the crucial roles of different solvents (such as solvent-free or in bulk, organic solvents, supercritical fluids, ionic liquids, and aqueous biphasic systems) on the degree of polymerization and polydispersity. In general, many studies suggest that hydrophobic organic solvents with minimum water contents lead to efficient enzymatic polymerization and subsequently high molecular weights of polyesters; the selection of solvents is also limited by the reaction temperature, e.g. the ROP of lactide is often conducted at above 100 °C, therefore, the solvent typically needs to have its boiling point above this temperature. The use of supercritical fluids could be limited by its scaling-up potential, while ionic liquids have exhibited many advantages include their low-volatility, high thermal stability, controllable enzyme-compatibility, and a wide range of choices. However, the fundamental and mechanistic understanding of the specific roles of ionic liquids in enzymatic ROP reactions is still lacking. Furthermore, the lipase specificity towards l- and d-lactide is also surveyed, followed by the discussion of engineered lipases with improved enantioselectivity and thermal stability. In addition, the preparation of polyester-derived materials such as polyester-grafted cellulose by the enzymatic ROP method is briefly reviewed.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
10
|
Zhao H, Afriyie LO, Larm NE, Baker GA. Glycol-functionalized ionic liquids for high-temperature enzymatic ring-opening polymerization. RSC Adv 2018; 8:36025-36033. [PMID: 35558444 PMCID: PMC9088744 DOI: 10.1039/c8ra07733a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
New glycol-functionalized ionic liquids exhibit high thermal stability and are lipase-compatible, leading to a high molecular weight of polyester in the enzymatic ring-opening polymerization reaction.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- USA
| | - Lennox O. Afriyie
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| |
Collapse
|
11
|
Abejón R, Pérez-Acebo H, Garea A. A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995-2015 Period: Study of the Main Applications and Trending Topics. MEMBRANES 2017; 7:membranes7040063. [PMID: 29112172 PMCID: PMC5746822 DOI: 10.3390/membranes7040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 01/06/2023]
Abstract
A bibliometric analysis based on Scopus database was performed to identify the global research trends related to Supported Ionic Liquid Membranes (SILMs) during the time period from 1995 to 2015. This work tries to improve the understanding of the most relevant research topics and applications. The results from the analysis reveal that only after 2005 the research efforts focused on SILMs became significant, since the references found before that year are scarce. The most important research works on the four main application groups for SILMs defined in this work (carbon dioxide separation, other gas phase separations, pervaporation and liquid phase separations) were summarized in this paper. Carbon dioxide separation appeared as the application that has received by far the most attention according to the research trends during the analysed period. Comments about other significant applications that are gaining attention, such as the employment of SILMs in analytical tasks or their consideration for the production of fuel cells, have been included.
Collapse
Affiliation(s)
- Ricardo Abejón
- Chemical and Biomolecular Engineering Department, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
| | - Heriberto Pérez-Acebo
- Mechanical Engineering Department, University of the Basque Country UPV/EHU, P° Rafael Moreno "Pitxitxi" 2, 48013 Bilbao, Spain.
| | - Aurora Garea
- Chemical and Biomolecular Engineering Department, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
| |
Collapse
|
12
|
Mezzasalma L, Dove AP, Coulembier O. Organocatalytic ring-opening polymerization of l-lactide in bulk: A long standing challenge. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
|
14
|
Characterization of Aliphatic Polyesters Synthesized via Enzymatic Ring-Opening Polymerization in Ionic Liquids. Molecules 2017; 22:molecules22060923. [PMID: 28574463 PMCID: PMC6152688 DOI: 10.3390/molecules22060923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of ionic liquids (ILs) on the microstructural features of aliphatic polyesters for biomedical applications, a series of copolymers were synthesized by lipase ring opening polymerization of rac-lactide (rac-LA) and ε-caprolactone (CL). The chemical structures of resulting polymers were characterized by 1H- and 13C-NMR and the average molecular weight (Mn) and dispersity index were characterized by gel permeation chromatography. The structure of the copolymers confirms the presence of linear polymer chains with end-functional hydroxyl groups allowing covalent coupling of the therapeutic agents. Chain microstructure of copolymers indicates the presence of both random and block copolymers depending on the synthesis conditions. Moreover, it was found that CL is the most active co-monomer during copolymerization which enhances the polymerizability of rac-LA and allows to obtain higher Mn of the copolymers. The results demonstrate that ILs could be promising solvents in synthesis of aliphatic esters for biomedical applications.
Collapse
|
15
|
Zhao H, Nathaniel GA, Merenini PC. Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv 2017. [DOI: 10.1039/c7ra09038b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Certain organic solvents and ionic liquids could promote the enzymatic ring-opening polymerization of lactide.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
- Department of Chemistry and Forensic Science
| | | | - Princess C. Merenini
- Department of Chemistry and Forensic Science
- Savannah State University
- Savannah
- USA
| |
Collapse
|
16
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Mena M, Shirai K, Tecante A, Bárzana E, Gimeno M. Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a–ionic liquid media. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Sun F, Luo X, Kang L, Peng X, Lu C. Synthesis of hyperbranched polymers and their applications in analytical chemistry. Polym Chem 2015. [DOI: 10.1039/c4py01462f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses primarily on the recent developments in the synthesis of hyperbranched polymers and their application in analytical chemistry.
Collapse
Affiliation(s)
- Fengxia Sun
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiaoling Luo
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Lichao Kang
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiayu Peng
- Key Laboratories of Sheep Breeding and Reproduce
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
| | - Chunxia Lu
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| |
Collapse
|
19
|
Piotrowska U, Sobczak M. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems. Molecules 2014; 20:1-23. [PMID: 25546617 PMCID: PMC6272625 DOI: 10.3390/molecules20010001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Biodegradable or bioresorbable polymers are commonly used in various pharmaceutical fields (e.g., as drug delivery systems, therapeutic systems or macromolecular drug conjugates). Polyesters are an important class of polymers widely utilized in pharmacy due to their biodegradability and biocompatibility features. In recent years, there has been increased interest in enzyme-catalyzed ring-opening polymerization (e-ROP) of cyclic esters as an alternative method of preparation of biodegradable or bioresorbable polymers. Ionic liquids (ILs) have been presented as green solvents in enzymatic ring-opening polymerization. The activity, stability, selectivity of enzymes in ILs and the ability to catalyze polyester synthesis under these conditions are discussed. Overall, the review demonstrates that e-ROP of lactones or lactides could be an effective method for the synthesis of useful biomedical polymers.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| |
Collapse
|
20
|
Zhang J, Shi H, Wu D, Xing Z, Zhang A, Yang Y, Li Q. Recent developments in lipase-catalyzed synthesis of polymeric materials. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|