1
|
Mustafa A, Azim MK, Laraib Q, Rehman QMU. Hybrid constructed wetlands and filamentous fungi for treatment of mixed sewage and industrial effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44230-44243. [PMID: 38941051 DOI: 10.1007/s11356-024-34037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Developing countries face multifaceted problems of water pollution and futile measures to combat water pollution. This study was conducted to explore the potential application of sustainable nature-based solutions, hybrid constructed wetlands, and the application of filamentous fungi to treat polluted river water that receives sewage and industrial wastewater. A pilot-scale hybrid constructed wetland design comprising two types of floating plants in distinct tanks along with a floating wetland and a free-water surface wetland connected in series was commissioned and tested. The system successfully removed organic pollution (BOD 94% and COD 90%), nutrients (NH4-N and NO3-N 67% and PO4-P 81%), and heavy metals (Cr 75%, Ni 56%, and Fe 79%) in 40 h and showed a high buffering capacity to cope with the varying pollutant loads. Metagenomics analysis of treated and untreated samples of river water revealed a diversified spatial bacterial community with ~ 25% sequences related to sulfur-metabolizing bacteria, genus Sulfuricurvum. The application of an immobilized strain of A. niger as a mycoremediation technique was also tested. It successfully removed pollutants in the combined sewage and industrial wastewater present in river water: COD (96%), TSS (97%), NH4-N (65%), NO3-N (67%), and PO4-P (78%). This study demonstrated that hybrid constructed wetlands and mycoremediation can be used as sustainable wastewater treatment options in the local context and also in developing countries where most of the conventional wastewater treatment plants do not operate.
Collapse
Affiliation(s)
- Atif Mustafa
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan.
| | - Muhammad Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qandeel Laraib
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qazi Muneeb Ur Rehman
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Araújo S, Damianovic M, Foresti E, Florencio L, Kato MT, Gavazza S. Biological treatment of real textile wastewater containing sulphate, salinity, and surfactant through an anaerobic-aerobic system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2882-2898. [PMID: 35638794 DOI: 10.2166/wst.2022.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real textile wastewater containing high salinity (up to 12.6 g·kg-1) and surfactant (up to 5.9 mg·L-1 of linear alkylbenzene sulfonate - LAS) was submitted to biological treatment for colour (up to 652 mg Pt-Co·L-1) and sulphate (up to 1,568.6 mg SO4-2·L-1) removal. The influence of ethanol and molasses supplementation was firstly evaluated in anaerobic batch reactors for the removal of dyes and sulphate. Subsequently, aiming to remove aromatic amines (dye degradation by-products), an anaerobic-aerobic continuous system supplemented with molasses was applied. Supplementation had no influence on colour removal (maximum efficiencies around 70%), while it improved sulphate reduction (23% without supplementation against 87% with supplementation), and conferred robustness to the reactors, which recovered quickly after higher salinity impact. The aerobic reactor removed aromatic amines when the level of surfactants was lower than 1.0 mg LAS·L-1, but the performance of the system was hindered when the concentration was increased to 5.9 mg LAS·L-1. Findings suggest that the supplementation of an easily biodegradable organic matter might be a strategy to overcome wastewater fluctuation in composition.
Collapse
Affiliation(s)
- Sofia Araújo
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Márcia Damianovic
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento, São Carlos, SP, Brazil
| | - Eugenio Foresti
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento, São Carlos, SP, Brazil
| | - Lourdinha Florencio
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Mario Takayuki Kato
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Sávia Gavazza
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| |
Collapse
|
3
|
Carvalho MGP, Marcelino DMS, Menezes O, Foresti E, Damianovic MHZ, Kato MT, Florêncio L, Gavazza S. The influence of sulphate on the treatment of azo dye‐containing wastewater in an anaerobic‐microaerobic compartmentalized fixed‐bed bioreactor. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcelo G. P. Carvalho
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
- Instituto Federal do Piauí Teresina Brazil
| | - Denise M. S. Marcelino
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
| | - Osmar Menezes
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
| | - Eugenio Foresti
- Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento Universidade de São Paulo São Carlos Brazil
| | - Marcia H. Z. Damianovic
- Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento Universidade de São Paulo São Carlos Brazil
| | - Mario T. Kato
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
| | - Lourdinha Florêncio
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental Universidade Federal de Pernambuco Recife Brazil
| |
Collapse
|
4
|
Biochar Derived from Agricultural Wastes as a Means of Facilitating the Degradation of Azo Dyes by Sulfides. Catalysts 2021. [DOI: 10.3390/catal11040434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dyes are common contaminants, some of which are teratogenic, carcinogenic, and causative of ecological damage, and dye wastewater often contains toxic sulfides. Biochar has been widely used for the adsorption and catalysis degradation of pollutants, including dyes and sulfides, due to its abundant surface functional groups and large specific surface area. Therefore, the simultaneous treatment of dyes and sulfides with biochar may be a feasible, effective, and novel solution. This study sought to utilize low-cost, environmentally friendly, and widely sourced biochar materials from agricultural wastes such as corn stalk, rice chaff, and bean stalk to promote the reduction of dyes by sulfides. Through the action of different biochars, sulfides can rapidly decompose and transform oxidizing dyes. The RCB800 (rice chaff biochar material prepared at 800 °C) was observed to have the best effect, with a degradation rate of 96.6% in 40 min and 100% in 50 min for methyl orange. This series of materials are highly adaptable to temperature and pH, and the concentration of sulfides has a significant effect on degradation rates. Compared with commercial carbon materials, biochars are similar in terms of their catalytic mechanism and are more economical. Scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption characterization results indicated that biochar contains more pores, including mesopores, and a sufficient specific surface area, both of which are conducive to the combination of sulfides and dyes with biochar. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that there are oxygen-containing functional groups (examples include quinones and carboxyl groups) on the surface of biochar that promote the reaction of sulfide and dye. The formation of active polysulfides also potentially plays an important role in the degradation reaction. This article outlines a new method for improving the degradation efficiency of azo dyes and sulfides via biochar materials derived from widely sourced agricultural wastes.
Collapse
|
5
|
Dai Q, Zhang S, Liu H, Huang J, Li L. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry 2020; 131:107349. [DOI: 10.1016/j.bioelechem.2019.107349] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
|
6
|
Hao DAC, Song SM, Cheng Y, Qin ZQ, Ge GB, An BL, Xiao PG. Functional and Transcriptomic Characterization of a Dye-decolorizing Fungus from Taxus Rhizosphere. Pol J Microbiol 2019; 67:417-430. [PMID: 30550228 PMCID: PMC7256826 DOI: 10.21307/pjm-2018-050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/18/2023] Open
Abstract
We isolated three laccase-producing fungus strains from Taxus rhizosphere. Myrotheium verrucaria strain DJTU-sh7 had the highest laccase activity of 216.2 U/ml, which was increased to above 300 U/ml after optimization. DJTU-sh7 had the best decolorizing effect for three classes of reactive dyes. The DJTU-sh7-containing fungal consortium displayed the robust decolorizing ability. Both color removal efficiency and chemical oxygen demand were increased in the consortium mediated biotransformation. Transcriptome changes of M. verrucaria elicited by azo dye and phenolic were quantified by the high throughput transcriptome sequencing, and the activities of the selected oxidases and reductases were determined. The possible involvement of oxidases and reductases, especially laccase, aryl alcohol oxidase, and ferric reductase in the biotransformation of dye and phenolic compounds was revealed at both transcriptomic and phenotypic levels. Revealing the transcriptomic mechanisms of fungi in dealing with organic pollutants facilitates the fine-tuned manipulation of strains in developing novel bioremediation and biodegradation strategies. We isolated three laccase-producing fungus strains from Taxus rhizosphere. Myrotheium verrucaria strain DJTU-sh7 had the highest laccase activity of 216.2 U/ml, which was increased to above 300 U/ml after optimization. DJTU-sh7 had the best decolorizing effect for three classes of reactive dyes. The DJTU-sh7-containing fungal consortium displayed the robust decolorizing ability. Both color removal efficiency and chemical oxygen demand were increased in the consortium mediated biotransformation. Transcriptome changes of M. verrucaria elicited by azo dye and phenolic were quantified by the high throughput transcriptome sequencing, and the activities of the selected oxidases and reductases were determined. The possible involvement of oxidases and reductases, especially laccase, aryl alcohol oxidase, and ferric reductase in the biotransformation of dye and phenolic compounds was revealed at both transcriptomic and phenotypic levels. Revealing the transcriptomic mechanisms of fungi in dealing with organic pollutants facilitates the fine-tuned manipulation of strains in developing novel bioremediation and biodegradation strategies.
Collapse
Affiliation(s)
- DA Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University , Dalian , China
| | - Si Meng Song
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University , Dalian , China
| | - Yan Cheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University , Dalian , China
| | - Zhi Qiang Qin
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University , Dalian , China
| | - Guang Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , China.,Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bai Lin An
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University , Dalian , China
| | - Pei Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
7
|
Amaral FM, Florêncio L, Kato MT, Santa-Cruz PA, Gavazza S. Hydraulic retention time influence on azo dye and sulfate removal during the sequential anaerobic-aerobic treatment of real textile wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3319-3327. [PMID: 29236011 DOI: 10.2166/wst.2017.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, we evaluate the behavior of real textile wastewater treatment using a system composed of two sequential pilot-scale reactors (anaerobic followed by aerobic) during 622 days. The work focused on the competition between color and sulfate removal processes, when the hydraulic retention time (HRT) was increased in the anaerobic/aerobic reactors from 16/12 hours in phase I (PI) to 4/3 days in phase II (PII). The organic matter was successfully removed in both phases through the system, and the highest efficiency (75%) was achieved in PII. The increase in the HRT did not improve azo dye degradation under anaerobic conditions. Instead, it favored sulfate reduction, which removal efficiency increased from 26% in PI to 75% in PII. Aromatic amines were detected in the anaerobic reactor effluent and removed in the aerobic reactor.
Collapse
Affiliation(s)
- F M Amaral
- Laboratory of Environmental Sanitation, Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, CEP 50740-530 Recife, PE, Brazil E-mail:
| | - L Florêncio
- Laboratory of Environmental Sanitation, Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, CEP 50740-530 Recife, PE, Brazil E-mail:
| | - M T Kato
- Laboratory of Environmental Sanitation, Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, CEP 50740-530 Recife, PE, Brazil E-mail:
| | - P A Santa-Cruz
- Laboratory of Environmental Sanitation, Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, CEP 50740-530 Recife, PE, Brazil E-mail:
| | - S Gavazza
- Laboratory of Environmental Sanitation, Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, CEP 50740-530 Recife, PE, Brazil E-mail:
| |
Collapse
|
8
|
Gao T, Shi Y, Liu F, Zhang Y, Feng X, Tan W, Qiu G. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:106-116. [PMID: 25746570 DOI: 10.1016/j.jhazmat.2015.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Todorokite, formed from Mn(II) in supergene environments, can affect the transformation and migration of dissolvable sulfides in soils and water. In this work, todorokite was synthesized with different degrees of crystallinity, and the redox mechanism of dissolvable sulfide and todorokite was studied in both closed and open aqueous systems. The influences of pH, temperature, crystallinity, the amount of manganese oxides, and oxygen gas on S(2-) oxidation process were investigated. It is found that S(2-) was oxidized to S(0), SO3(2-), S2O3(2-) and SO4(2-), and about 90% of S(2-) was converted into S(0) in closed systems. The participation of oxygen facilitated the further oxidation of S(0) to S2O3(2-). S(0) and S2O3(2-) were formed with the conversion rates of S(2-) about 45.3% and 38.4% after 1h of reaction, respectively, and the conversion rate for S2O3(2-) increased as reaction prolonged for a longer period. In addition, todorokite was reduced to Mn(OH)2 in the presence of nitrogen gas, and its chemical stability increased when oxygen gas was admitted into the reaction system during the process. The oxidation rate of dissolvable sulfide followed a pseudo-first-order kinetic law in the initial stage (within 10 min), and the initial oxidation rate constant of S(2-) increased with elevating temperature, increasing the quantity and decreasing crystallinity of todorokite. The initial oxidation rate of dissolvable sulfide decreased with continuous feeding of O2 into the test solution, possibly due to a decrease in active Mn(III) content in todorokite. The present work demonstrates the redox behaviors and kinetics of dissolvable sulfide and todorokite in aquatic environments.
Collapse
Affiliation(s)
- Tianyu Gao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ying Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yashan Zhang
- Department of Chemistry, University of Connecticut, Storrs, 55 North Eagleville Road, Storrs, CT 06269, USA
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|